

DALiuGE

Welcome to the Data Activated 流 1 Graph Engine (DALiuGE).

DALiuGE
is a workflow graph execution framework, specifically designed to support very large scale processing graphs for the reduction of interferometric radio astronomy data sets. DALiuGE has already been used for processing large astronomical datasets in existing radio astronomy projects. It originated from a prototyping activity as part of the SDP Consortium called Data Flow Management System (DFMS). DFMS aimed to prototype the execution framework of the proposed SDP architecture.
For a complete tour of DALiuGE please read
our overview paper [http://dx.doi.org/10.1016/j.ascom.2017.03.007].

[image: _images/DALiuGE_naming_rationale.png]

Development and maintenance of DALiuGE is currently hosted at ICRAR [http://www.icrar.org]
and is performed by the DIA team [http://www.icrar.org/our-research/data-intensive-astronomy/].

	Introduction

	Installation
	Requirements

	Installing

	Docker images

	Overview
	Concepts and Background

	DROPs

	Graphs

	DROP Managers

	Data Lifecycle Manager

	References

	Graph development
	Using the Logical Graph Editor

	Directly creating a Physical Graph

	Using dlg.delayed()

	Application development
	Class

	I/O

	Using the Logical Graph Editor
	General

	Components

	Examples

	API
	dlg

	dlg.manager

	dlg.apps

	dlg.dropmake

Should you have any questions, please contact us at: dfms_prototype AT googlegroups DOT com

Citations

As you use DALiuGE for your exciting projects, please cite the following paper:

Wu, C., Tobar, R., Vinsen, K., Wicenec, A., Pallot, D., Lao, B., Wang, R.,
An, T., Boulton, M., Cooper, I. and Dodson, R., 2017.
DALiuGE: A Graph Execution Framework for Harnessing the Astronomical Data Deluge.
Astronomy and Computing, 20, pp.1-15. (2017) [https://arxiv.org/pdf/1702.07617.pdf]

	1

	流 (pronounced Liu) is the Chinese character for “flow”.

Introduction

The Data Activated 流 (Liu) Graph Engine (DALiuGE) is a workflow graph execution framework,
specifically designed to support very large scale processing graphs for the reduction of
interferometric radio astronomy data sets.
DALiuGE aims to provide a distributed data management platform and a
scalable pipeline execution environment to support continuous, soft real-time,
data-intensive processing for producing radio astronomy data products.

DALiuGE originated from a prototyping activity as part of the SKA SDP Consortium called Data Flow Management System (DFMS).

The development of DALiuGE is largely based on radio astronomy processing requirements.
However, DALiuGE has adopted a generic, data-driven framework architecture potentially applicable to
many other data-intensive applications.

DALiuGE stands on shoulders of many previous studies on dataflow, data
management, distributed systems (databases), graph theory, and HPC scheduling.
DALiuGE has also borrowed useful ideas from existing dataflow-related open
sources (mostly Python!) such as Luigi [http://luigi.readthedocs.io/],
TensorFlow [http://www.tensorflow.org/], Airflow [https://github.com/airbnb/airflow],
Snakemake [https://bitbucket.org/snakemake/snakemake/wiki/Home], etc.
Nevertheless, we believe DALiuGE has some unique features well suited
for data-intensive applications:

	Completely data-activated, by promoting data DROPs to become graph “nodes” (no longer just edges)
that has persistent states and can consume and raise events

	Integration of data-lifecycle management within the data processing framework

	Separation of concerns between logical graphs (high level workflows) and physical graphs (execution recipes)

	Flexible pipeline component interface, including Docker containers.

In Overview we give a glimpse to the main concepts present in DALiuGE.
Later sections of the documentation describe more in detail how DALiuGE works. Enjoy!

Installation

Requirements

The DALiuGE framework requires no packages apart from those listed in its
setup.py
file, which are automatically retrieved when running it. The spead2 library
(one of the DALiuGE’ optional requirements) however requires a number of libraries
installed on the system:

	boost-python

	boost-system

	boost-devel

	gcc >= 4.8

Installing

DALiuGE is based on setuptools, and thus it follows the standard python installation
procedures.
The preferred way of installing the latest stable version of DALiuGE
is by using pip:

pip install --process-dependency-links daliuge

If you want to build from the latest sources you can get them from here:

git clone https://github.com/ICRAR/daliuge
cd daliuge

If a system-wide installation is required, then the following
commands can be issued:

sudo pip --process-dependency-links install .

If pip is not available, you can also use a different approach with:

python setup.py build
sudo python setup.py install

If a virtualenv is loaded, then DALiuGE can be installed on it by simply running:

pip install --process-dependency-links .

Again, if pip is not available, you can use the simpler form:

python setup.py install

There is a known issue in some systems
when installing the python-daemon dependency,
which needs to be installed via pip.

Docker images

Docker images can be built using the Dockerfiles under the docker directory.
Please refer to the README file in the docker directory for more information.

Overview

The following sections give an overview of the different modules present in
DALiuGE.

	Concepts and Background
	Dataflow

	Graph

	Data-driven

	DALiuGE Functions

	DROPs
	Lifecycle

	Events

	Relationships

	Input/Output

	DROP Channels

	DROP Component Interface

	Graphs
	Logical Graph
	Construct properties

	Control flow constructs

	Repository

	Select template

	Translation
	Basic steps

	Algorithms

	Physical Graph

	Execution

	DROP Managers
	Sessions

	Node DROP Manager

	Data Island DROP Manager

	Master DROP Manager

	Interface

	Clients

	Data Lifecycle Manager

	References

Concepts and Background

This section briefly introduces key concepts and motivations underpinning
DALiuGE.

Dataflow

A traditional dataflow computation model does not explicitly place any control or
constraints on the order or timing of operations beyond what is inherent in the
data dependencies among compute tasks. The removal of explicit scheduling of
compute task in the dataflow model has opened up new (e.g. parallelism)
opportunities that are previously masked by “artificial” control flow imposed by
applications or programmers. A similar example is the make tool, where the
programmer focuses on defining each target and its dependencies. The burden of
exploring parallelism to efficiently execute many individual compiling tasks in
a correct order lies within the responsibility of the make utility.

Graph

Following the dataflow model, a computer program can be described by a Directed
Graph where the nodes denote compute task, and the edges denote data dependencies
between operations. In principle, a dataflow graph consists of edges,
nodes (or actors), and tokens. Tokens represent data items and travel across
directed edges to be transformed at nodes into other data items (similar to
functions). While in theory the dataflow model provides a powerful yet simple
formalism to describe parallel computation, early efforts in developing
dataflow architecture [http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=48862]
had to introduce control flow operators (e.g. switch and merge) and data
storage mechanism in order to put dataflow models into practice.

Data-driven

In developing the DALiuGE prototype, we have extended the “traditional” dataflow
model by integrating data lifecycle management, graph execution engine, and
cost-optimal resource allocation into a coherent data-driven framework.
Concretely, we have made the following changes to the existing dataflow model:

	Unlike traditional dataflow models that characterise data as “tokens” moving
across directed edges between nodes, we instead model data as the node,
elevating them as actors who have autonomy to manage their own lifecycles and
trigger appropriate “consumer” applications based on their own internal
(persistent) states. In our graph model, both application (task) and data nodes
are termed as DROPs. What are really moving on the edge are
Drop Events.

	While nodes/actors in the traditional dataflow are stateless functions, we
express both computation and data nodes as stateful DROPs. Statefulness not only
allows us to manage DROPs through persistent checkpointing, versioning and recovery
after restart, etc., but also enables data sharing amongst multiple processing
pipelines in situations like re-processing or commensal observations.
All the state information is kept in the Drop wrapper, while the payload of the
Drops, i.e. pipeline component algorithms and data, are stateless.

	We introduced a small number of control flow graph nodes at the logical level
such as Scatter, Gather, GroupBy, Loop, etc. These additional control
nodes allow pipeline developers to systematically express complex data
partitioning and event flow patterns based on various requirements and science
processing goals. More importantly, we transform these control nodes into
ordinary DROPs at the physical level. Thus they are nearly transparent to the
underlying graph/dataflow execution engine, which focuses solely on exploring
parallelisms orthogonal to these control nodes placed by applications. In this
way, the Data-Driven framework enjoys the best from both worlds - expressivity
at the application level and flexibility at the dataflow system level.

	Finally, we differentiate between two kinds of dataflow graphs - Logical Graph and
Physical Graph. While the former provides a higher level of computation
abstraction in a resource-independent manner, the latter represents the actual
execution plan consisting of inter-connected DROPs mapped onto a given set of
hardware resources in order to meet performance requirements at minimum cost
(e.g. power consumption).

DALiuGE Functions

The DALiuGE prototype provides eight Graph-based functions as shown in
Fig. 1.

[image: _images/dfms_func_as_graphs.jpg]
Fig. 1 Graph-based Functions of the DALiuGE Prototype

The Graphs section will go through implementation details for each function.
Here we briefly discuss how they work together in our data-driven framework.

	First of all, the Logical Graph Template (topleft in
Fig. 1) represents high-level
data processing capabilities. In the case of SDP, they could be, for example,
“Process Visibility Data” or “Stage Data Products”.

	All logical graph templates are managed by the LogicalGraph Template
Repository (bottomleft in Fig. 1).
The logical graph template is first selected from this repository for a specific pipeline and
is then filled with scheduling block parameters. This generates a Logical Graph, expressing a pipeline with resource-oblivious dataflow constructs.

	Using profiling information of pipeline components and COMP hardware resources, the DALiuGE prototype
then “translates” a Logical Graph into a Physical Graph Template, which prescribes a manifest of ALL DROPs without specifying their physical locations.

	Once the information on resource availability (e.g. compute node, storage, etc.) is presented,
DALiuGE associates each DROP in the physical graph template with an available resource unit
in order to meet pre-defined requirements such as performance, cost, etc.
Doing so essentially transforms the physical graph template into a Physical Graph,
consisting of inter-connected DROPs mapped onto a given set of resources.

	Before an observation starts, DALiuGE deploys all the DROPs onto these resources as per the
location information stated in the physical graph. The deployment process is
facilitated through DROP Managers, which are daemon processes managing deployed DROPs
on designated resources.

	Once an observation starts, the graph Execution cascades down the graph edges through either data DROPs that triggers its next consumers or application DROPs
that produces its next outputs. When all DROPs are in the COMPLETED state, some data DROPs
are persistently preserved as Science Products by using an explicit persist
consumer, which very likely will be specifically dedicated to a certain
science data product.

DROPs

DROPs are at the center of the DALiuGE. DROPs are representations of data and
applications, making them manageable by DALiuGE.

Lifecycle

The lifecycle of a DROP is simple and follows the basic principle of writing
once, read many times. Additionally, it also allows for data deletion.

A DROP starts in the INITIALIZED state, meaning that its data is not
present yet. From there it jumps into COMPLETED once its data has been
written, optionally passing through WRITING if the writing occurs
through DALiuGE (see Input/Output). Once in the COMPLETED state the data
can be read as many times as needed. Eventually, the DROP will transition to
EXPIRED, denying any further reads. Finally the data is deleted and the DROP
moves to the final DELETED state. If any I/O error occurs the DROP will be
moved to the ERROR state.

Events

Changes in a DROP state, and other actions performed on a DROP, will fire named
events which are sent to all the interested subscribers. Users can subscribe to
particular named events, or to all events.

In particular the Node DROP Manager subscribes to all events generated by
the DROPs it manages. By doing so it can monitor all their activities and perform
any appropriate action as required. The Node DROP Manager, or any other entity,
can thus become a Graph Event Manager, in the sense that they can subscribe to
all events sent by all DROPs and make use of them.

Relationships

DROPs are connected between them and create a graph representing an execution
plan, where inputs and outputs are connected to applications, establishing the
following possible relationships:

	None or many data DROP(s) can be the input of an application DROP; and
the application is the consumer of the data DROP(s).

	A data DROP can be a streaming input of an application
DROP in which case the application is seen as a streaming consumer from
the data DROP’s point of view.

	None or many DROP(s) can be the output of an application DROP, in
which case the application is the producer of the data DROP(s).

	An application is never a consumer or producer of another application;
conversely a data DROP never produces or consumes another data DROP.

The difference between normal inputs/consumers and their streaming
counterpart is their granularity. In the normal case, inputs only notify their
consumers when they have reached the COMPLETED state, after which the
consumers can open the DROP and read their data. Streaming inputs on
the other hand notify consumers each time data is written into them (alongside
with the data itself), and thus
allow for a continuous operation of applications as data gets written into
their inputs. Once all the data has been written, the normal event notifying
that the DROP has moved to the COMPLETED state is also fired.

Input/Output

I/O can be performed on the data that is represented by a DROP by obtaining a
reference to its I/O object and calling the necessary POSIX-like methods. In
this case, the data is passing through the DROP instance. The application is
free to bypass the DROP interface and perform I/O directly on the data, in which
case it uses the data DROP dataURL to find out the data location. It is the
responsibility of the application to ensure that the I/O is occurring in the
correct location and using the expected format for storage or subsequent
upstream processing by other application DROPs.

DALiuGE provides various commonly used data DROPs with their associated I/O
storage classes, including in-memory, file-base and S3 storages.

DROP Channels

DROPs that are connected by an edge in a physical graph but are deployed on separate nodes or islands from each other are automatically given a Pyro stub (remote method invocation interface) to allow them to communicate with each other. It’s the job of the Master DROP and Island Managers to generate and exchange stubs between DROP instances before the graph is deployed to the various data islands and nodes within islands respectively. If there is no DROP separation within a physical graph partition then its implied that the DROPs are going to be executed within a single address space, as a result, basic method calls are used between DROP instances.

DROP Component Interface

The DALiuGE framework uses Docker containers as its primary interface to 3rd party applications. Docker containers have the following benefits over traditional tools management:

	Portability.

	Versioning and component reuse.

	Lightweight footprint.

	Simple maintenance.

The application programmer can make use of the DockerApp which is the interface between a Docker container and
the DROP framework. Refer to the documentation for details.

Other applications not based on Docker containers can be written as well. Any
application must derive at least from AppDROP, but an easier-to-use base
class is the BarrierAppDROP, which simply requires a run method to be
written by the developer (see dlg.drop for details). DALiuGE ships with
a set of pre-existing applications to perform common operations, like a TCP
socket listener and a bash command executor, among others. See dlg.apps
for more examples.

Graphs

A processing pipeline in DALiuGE is described by a Directed Graph where the nodes
denote both task (application DROPs) and data (data DROPs). The edges denote
execution dependencies between DROPs. Section DALiuGE Functions has briefly
introduced graph-based functions in DALiuGE. This section provides implementation
details in the DALiuGE prototype.

Logical Graph

A logical graph is a compact representation of the logical operations in a processing
pipeline without concerning underlying hardware resources. Such operations are
referred to as construct in a logical graph. The relationship between a DROP
and a construct resembles the one between and object and a class in Object
Oriented programming languages. In other words, most constructs are DROP
templates and multiple DROPs correspond to a single construct.

[image: _images/scatter_example.png]
Fig. 2 An example of a logical graph with data constructs (e.g. Data1 - Data5),
component constructs (i.e. Component1 - Component5), and control flow constructs
(Scatter, Gather, and Group-By). This example can be viewed
online [http://sdp-dfms.ddns.net/lg_editor?lg_name=lofar_cal.json] in the DALiuGE prototype.

Construct properties

Each construct has several
associated properties that users have control over during the development of a
logical graph.
For Component and Data constructs the Execution time and Data volume are two very important
properties. Such properties can be directly obtained from parametric models or
estimated [http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=546196] from the profiling information (e.g. pipeline component workload characterisation) and COMP platform specification.

Control flow constructs

Control flow constructs form the “skeleton” of the logical graph, and determine
the final structure of the physical graph to be generated. DALiuGE currently supports
the following flow constructs:

	Scatter indicates data parallelism. Constructs inside a Scatter construct
represent a group of components consuming a single data partition within the enclosing
Scatter. A useful property of Scatter is num_of_copies.
In the example in Fig. 2, if the num_of_copies for
Scatter1
and Scatter2 are 5 and 4 respectively, the generated physical graph
will have in total 20 Data1/Component1/Data3 DROPs, but only 5 DROPs for the
construct Component 5,
which is inside the Scatter1 construct but outside Scatter2.

	Gather indicates data barriers. Constructs inside a Gather represent a group
of components consuming a sequence of data partitions as a whole. Gather has a
num_of_inputs property,
which represents the Gather “width”, stating how many
partitions each Gather instance (translated into a BarrierAppDROP, see
DROP Component Interface)
can handle. This in turn is used by DALiuGE to determine how many Gather instances should be
generated in the physical graph. Gather sometimes can be used in conjunction with
Group By (see middle-right in Fig. 2), in which case, data held in a sequence of groups are processed
together by components enclosed by Gather.

	Group By indicates data resorting (e.g. corner turning [https://mnras.oxfordjournals.org/content/410/3/2075.full] in radio astronomy).
The semantic is analogous to the GROUP BY construct used in SQL statement for relational
databases, but applied to data DROPs. The current DALiuGE prototype requires that
Group By is used in
conjunction with a nested Scatter such that data DROPs that are originally sorted
in the order of [outer_partition_id][inner_partition_id] are resorted as [inner_partition_id][outer_partition_id].
In terms of parallelism, Group By
is comparable to the “static” MapReduce [http://openmymind.net/2011/1/20/Understanding-Map-Reduce/],
where the keys used by all Reducers are known a priori.

	Loop indicates iterations. Constructs inside a Loop represent a group of
components and data that will be repeatedly executed / produced for a fixed number of
times. Given the basic DROP principle of “writing once, read many times”, the current
DALiuGE prototype does not support dynamic branch condition for Loop.
Instead, each Loop construct has a property named num_of_iterations that must be
determined at logical graph development time, and that determines the number of
times the loop is “unrolled”. In other words, a
num_of_iterations
number of DROPs for each construct inside a Loop will be statically generated
in the physical graph. An example is shown in Fig. 3.

[image: _images/loop_example.png]
Fig. 3 A nested-Loop (minor and major cycle) example of logical graph for
a continuous imaging pipeline. This example can be viewed online [http://sdp-dfms.ddns.net/lg_editor?lg_name=cont_img.json] in the DALiuGE prototype.

Repository

The DALiuGE prototype uses a Web-based logical graph editor as the default user interface
to the underlying logical graph repository, which currently is simply a managed
POSIX file system directory. Each logical graph is physically stored as a
JSON-formatted textual file, and can be accessed and modified remotely through
the logical graph editor via the RESTful interface. For example, the JSON file for the continuous
imaging pipeline as shown partially in Fig. 3 can be accessed through HTTP GET [http://sdp-dfms.ddns.net/jsonbody?lg_name=cont_img.json].
The editor also provides a Web-based JSON editor so that users can directly change
the graph JSON content inside the repository.

Select template

While the DALiuGE logical graph editor does not differentiate between logical graph
and logical graph template, users can create either of them using the editor
(after all,
the only differences between these two are the populated values for some
parameters).
Once a template is created or selected, users can simply copy and paste the JSON content into
the new logical graph and fill in those parameter values (as construct properties)
using the editor. Note that the public version of the logical graph editor has
not yet opened its “create new logical graph” API.

Translation

While a logical graph provides a compact way to express complex processing logic,
it contains high level control flow specifications that are not directly usable
by the underlying graph execution engine and DROP managers. To achieve that,
logical graphs are translated into physical graphs. The translation process essentially
creates all DROPs and is implemented in the dlg.dropmake module.

Basic steps

DropMake in the DALiuGE prototype involves the following steps:

	Validity checking. Checks whether the logical graph is ready to be translated.
This step is similar to semantic error checking used in compilers.
For example, DALiuGE currently does not allow any cycles in the logical graph. Another
example is that Gather can be placed only after a Group By or a Data construct
as shown in Fig. 2. Any validity errors
will be displayed as exceptions on the logical graph editor.

	Construct unrolling. Unrolls the logical graph by (1) creating all necessary DROPs
(including “artifact” DROPs that do not appear in the original logical graph),
and (2) establishing directed edges amongst all newly generated DROPs. This step
produces the Physical Graph Template.

	Graph partitioning. Decomposes the Physical Graph Template into a set of
logical partitions (a.k.a. DropIsland) and generates an order of DROP
execution sequence within each partition such that certain performance
requirements (e.g. total completion time, total data movement, etc.) are met
under given constraints (e.g. resource footprint). An important assumption is
that the cost of moving data within the same partition is far
less than that between two different partitions. This step produces
the Physical Graph Template Partition.

	Resource mapping. Maps each logical partition onto a given set of resources
in certain optimal ways (load balancing, etc.). Concretely, each DROP is assigned
a physical resource id (such as IP address, hostname, etc.). This step requires
near real-time resource usage information from the COMP platform or the Local Monitor & Control (LMC).
It also needs DROP managers to coordinate the DROP deployment.
In some cases, this mapping step is merged with the previous Graph partitioning step
to directly map DROPs to resources. This step produces the Physical Graph.

Under the assumption of uniform resources (e.g. each node has identical capabilities),
graph partitioning is equivalent to resource mapping since mapping involves simple
round-robin all available resources. In this case, graph partitioning
algorithms (e.g. METIS [5]) actually support multi-constraints
load balancing so that both CPU load and memory usage on each node is roughly similar.

For heterogeneous resources, which DALiuGE has not yet supported, usually the graph
partitioning is first performed, and then resource mapping refers to the assignment
of partitions to different resources based on demands and capabilities using
graph / tree-matching algorithms[16] [http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6495451] .
However, it is also possible that the graph partitioning
algorithm directly produces a set of unbalanced partitions “tailored” for those
available heterogeneous resources.

In the following context, we use the term Scheduling to refer to the combination of
both Graph partitioning and Resource mapping.

Algorithms

Scheduling an Acyclic Directed Graph (DAG) that involves graph partitioning and resource mapping as stated in Basic steps
is known to be an NP-hard problem [http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=210815].
The DALiuGE prototype has tailored several heuristics-based algorithms from previous research on DAG scheduling [http://dl.acm.org/citation.cfm?id=344618]
and graph partitioning [http://www.sciencedirect.com/science/article/pii/S0743731597914040] to perform these two steps. These algorithms are currently configured by DALiuGE to utilise uniform hardware resources.
Support for heterogenous resources using the List scheduling [https://en.wikipedia.org/wiki/List_scheduling]
algorithm will be made available shortly. With these algorithms, the DALiuGE prototype
currently attempts to address the following translation problems:

	Minimise the total cost of data movement but subject to a given degree of load balancing.
In this problem, a number N of available resource units (e.g. a number of compute nodes)
are given, the translation process aims to produce M DropIslands (M <= N)
from the physical graph template such that (1) the total volume of data traveling
between two distinct DropIslands is minimised, and (2) the workload variations
measured in aggregated execution time (DROP property) between a pair of DropIslands is less than a given
percentage p %. To solve this problem, graph partitioning and resource mapping steps are merged into one.

	Minimise the total completion time but subject to a given degree of parallelism (DoP)
(e.g. number of cores per node) that each DropIsland is allowed to take advantage of.
In the first version of this problem, no information regarding resources is given.
DALiuGE simply strives to come up with the optimal number of DropIslands such that
(1) the total completion time of the pipeline (which depends on both execution time
and the cost of data movement on the graph critical path) is minimised, and (2)
the maximum degree of parallelism within each DropIsland is
never greater than the given DoP. In the second version of this problem,
a number of resources of identical performance capability are also given in addition
to the DoP. This practical problem is a natural extension of version 1,
and is solved in DALiuGE by using the
“two-phase” method [http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=580873].

	Minimise the number of DropIslands but subject to (1) a given completion time deadline,
and (2) a given DoP (e.g. number of cores per node)
that each DropIsland is allowed to take advantage of. In this problem, both completion
time and resource footprint become the minimisation goals. The motivation of this problem
is clear. In an scenario where two different schedules can complete the processing pipeline
within, say, 5 minutes, the schedule that consumes less resources is preferred. Since a DropIsland
is mapped onto resources, and its capacity is already constrained by a given DoP,
the number of DropIslands is proportional to the amount of resources needed.
Consequently, schedules that require less number of DropIslands are superior.
Inspired by the hardware/software co-design [http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=558708] method in embedded systems design,
DALiuGE uses a “look-ahead” strategy at each optimisation step to adaptively
choose from two conflicting objective functions (deadline or resource) for
local optimisation, which is more likely to lead to the global optimum than
greedy strategies.

Physical Graph

The Translation process produces the physical graph specification, which, once
deployed and instantiated “live”, becomes the physical graph, a
collection of inter-connected DROPs in a distributed
execution plan across multiple resource units. The nodes of a physical graph are
DROPs representing either data or applications. The two DROP nodes connected by
an edge always have different types from each other. This establishes a set of
reciprocal relationships between DROPs:

	A data DROP is the input of an application DROP; on the other hand
the application is a consumer of the data DROP.

	Likewise, a data DROP can be a streaming input of an application
DROP (see Relationships) in which case the application is seen as
a streaming consumer from the data DROP’s point of view.

	Finally, a data DROP can be the output of an application DROP, in
which case the application is the producer of the data DROP.

Physical graph specifications are the final (and only) graph products that will be submitted
to the DROP Managers. Once DROP managers accept a physical graph specification,
it is their responsibility to create and deploy DROP instances on their managed resources as
prescribed in the physical graph specification such as partitioning information
(produced during the Translation) that allows different managers to distribute
graph partitions (i.e. DropIslands) across different nodes and Data Islands by
setting up proper DROP Channels. The fact that physical graphs are made
of DROPs means that they describe exactly what an Execution consists
of. In this sense, the physical graph is the graph execution engine.

In addition to DROP managers, the DALiuGE prototype also includes a Physical Graph Manager,
which allows users to manage all currently running and past physical graphs within
the system. Although the current Physical Graph Manager implementation only supports
to “add” and “get” physical graph specifications, features such as graph event monitoring
(through the DROP Events subscription mechanism) and the graph statistics dashboard will
be added in the near future.

Execution

A physical graph has the ability to advance its own
execution. This is internally implemented via the DROP event mechanism as follows:

	Once a data DROP moves to the COMPLETED state it will fire an event
to all its consumers. Consumers (applications) will then deem if they can start their
execution depending on their nature and configuration. A specific type of
application is the BarrierAppDROP, which waits until all its inputs are in
the COMPLETED state to start its execution.

	On the other hand, data DROPs receive an even every time their producers
finish their execution. Once all the producers of a DROP have finished, the
DROP moves itself to the COMPLETED state, notifying its consumers, and so
on.

Failures on applications and data DROPs are transmitted likewise automatically
via events. Data DROPs move to ERROR if any of its producers move to
ERROR, and application DROPs move the ERROR if a given input error
threshold (defaults to 0) is passed (i.e., when more than a given percentage of
inputs move to ERROR) or if their execution fails. This way whole branches of execution might fail, but
after reaching a gathering point the execution might still resume if enough
inputs are present.

DROP Managers

The runtime environment of DALiuGE consists on a hierarchy of DROP Managers.
DROP Managers offer a standard interface to external entities to interact with
the runtime system, allowing users to submit physical graphs, deploy them, let
them run and query their status.

DROP Managers are organized hierarchically, mirroring the topology of the
environment hosting them, and thus enabling scalable solutions. The current design is flexible
enough to add more intermediate levels if necessary in the future. The
hierarchy levels currently present are:

	A Node DROP Manager exists for every node in the system.

	Nodes are grouped into Data Islands, and thus a Data Island DROP Manager
exists at the Data Island level.

	On top of the Data Islands is the Master DROP Manager.

Sessions

The DROP Managers’ work is to manage and execute physical graphs. Because
more than one physical graph can potentially be deployed in the system, DROP
Managers introduce the concept of a Session. Sessions represent a physical graph
execution, which are completely isolated from one another. This has two main
consequences:

	Submitting the same physical graph to a DROP Manager will create two different
sessions

	Two physical graph executions can run at the same time in a given DROP
Manager.

Sessions have a simple lifecycle: they are first created, then a physical graph
is attached into them (optionally by parts, or all in one go), after which the
graph can be deployed (i.e., the DROPs are created). This leaves the session in
a running state until the graph has finished its execution, at which point the
session is finished and can be deleted.

Node DROP Manager

Node DROP Managers sit at the bottom of the DROP management hierarchy. They
are the direct responsible for creating and deleting DROPs, and for ultimately
running the system.

The Node DROP Manager works mainly as a collection of sessions that are created,
populated and run. Whenever a graph is received, it checks that it’s valid
before accepting it, but delays the creation of the DROPs until deployment time.
Once the DROPs are created, the Node DROP Manager exposes them via Pyro to allow
remote method executions on them.

Data Island DROP Manager

Data Island DROP Managers sit on top of the Node DROP Managers. They follow the
assumed topology where a set of nodes is grouped into a logical Data Island.
The Data Island DROP Manager is the public interface of the whole Data Island to
external users, relaying messages to the individual Node DROP Managers as
needed.

When receiving a physical graph, the Data Island DROP Manager will first check
that the nodes of the graph contain all the necessary information to route them
to the correct Node DROP Managers. At deployment time it will also make sure that
the inter-node DROP relationships (which are invisible from the Node DROP
Managers’ point of view) are satisfied by obtaining DROP Pyro proxies and
linking them correspondingly.

Master DROP Manager

The Master DROP Manager works exactly like the Data Island DROP Manager but one
level above. At this level a set of Data Islands are gathered together to form a
single group of which the Master DROP Manager is the public interface.

Interface

All managers in the hierarchy expose a REST interface to external users. The
interface is exactly the same independent of the level of the manager in the
hierarchy.

The hierarchy contains the following entry points:

GET /api
POST /api/sessions
GET /api/sessions
GET /api/sessions/<sessionId>
DELETE /api/sessions/<sessionId>
GET /api/sessions/<sessionId>/status
POST /api/sessions/<sessionId>/deploy
GET /api/sessions/<sessionId>/graph
GET /api/sessions/<sessionId>/graph/status
POST /api/sessions/<sessionId>/graph/append

The interface indicate the object with which one is currently interacting, which
should be self-explanatory. GET methods are queries performed on the
corresponding object. POST methods send data to a manager to create new
objects or to perform an action. DELETE methods delete objects from the
manager.

Of particular attention is the POST /api/sessions/<sessionId>/graph/append
method used to feed a manager with a physical graph. The content of such request
is a JSON list of objects, where each object contains a full description of a
DROP to be created by the manager.

Clients

Python clients are available to ease the communication with the different
managers. Apart from that, any third-party tool that talks the HTTP
protocol can easily interact with any of the managers.

Data Lifecycle Manager

As mentioned in Introduction and Data-driven DALiuGE also integrates
a data lifecycle management within the data processing framework. Its purpose is
to make sure the data is dealt with correctly in terms of storage, taking into
account how and when it is used. This includes, for instance, placing medium-
and long-term persistent data into the optimal storage media, and to remove
data that is not used anymore.

The current DALiuGE implementation contains a Data Lifecycle Manager (DLM)
prototype. Because of the high coupling that is needed with all the Drops the
DLM is contained within the Node DROP Manager processes, and thus shares
the same memory space with the Drops it manages. By subscribing to events sent
by individual Drops it can track their state and react accordingly.

The DLM functionalities currently implemented in the DALiuGE prototype are:

	Automatically expire Drops; i.e., moves them from the COMPLETED state
into the EXPIRED state, after which they are not readable anymore.

	Automatically delete data from Drops in the EXPIRED state, and move the
Drops into the DELETED state.

	Persist Drops’ states in a registry (currently implemented with an
in-memory registry and a RDBMS-based registry).

How and when a Drop is expired can be configured via two per-Drop, mutually
exclusive methods:

	A lifetime can be set in a Drop indicating how long should it live, and
after which it should be moved to the EXPIRED state, regardless of whether
it is still being used or not.

	A expire_after_use flag can be set in a Drop indicating that it should be
expired right after all its consumers have finished executing.

References

	Nikhil, R.S., 1990. Executing a program on the MIT tagged-token dataflow
architecture. Computers, IEEE Transactions on, 39(3), pp.300-318.

	Iverson, M.A., Özgüner, F. and Follen, G.J., 1996, August. Run-time
statistical estimation of task execution times for heterogeneous distributed
computing. In High Performance Distributed Computing, 1996.,
Proceedings of 5th IEEE International Symposium on (pp. 263-270). IEEE.

	Gaussier, E., Glesser, D., Reis, V. and Trystram, D., 2015, November. Improving
backfilling by using machine learning to predict running times. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis (p. 64). ACM.

	Chaudhary, V. and Aggarwal, J.K., 1993. A generalized scheme for mapping
parallel algorithms. Parallel and Distributed Systems, IEEE Transactions on, 4(3), pp.328-346.

	Karypis, G. and Kumar, V., 1998. Multilevelk-way partitioning scheme for
irregular graphs. Journal of Parallel and Distributed computing, 48(1), pp.96-129.

	Topcuoglu, H., Hariri, S. and Wu, M.Y., 2002. Performance-effective and
low-complexity task scheduling for heterogeneous computing.
Parallel and Distributed Systems, IEEE Transactions on, 13(3), pp.260-274.

	Kwok, Y.K. and Ahmad, I., 1999. Static scheduling algorithms for allocating
directed task graphs to multiprocessors. ACM Computing Surveys (CSUR), 31(4), pp.406-471.

	Yang, T. and Gerasoulis, A., 1994. DSC: Scheduling parallel tasks on an
unbounded number of processors. Parallel and Distributed Systems,
IEEE Transactions on, 5(9), pp.951-967.

	Sarkar, V., 1989. Partitioning and Scheduling Parallel Programs for
Multiprocessors. MIT Press

	https://en.wikipedia.org/wiki/Antichain

	Mohan, C., Pirahesh, H., Tang, W.G. and Wang, Y., 1994. Parallelism in
relational database management systems. IBM Systems Journal, 33(2), pp.349-371.

	Wang, Y., 1995, September. DB2 query parallelism: Staging and implementation.
In Proceedings of the 21th International Conference on Very Large Data Bases
(pp. 686-691). Morgan Kaufmann Publishers Inc.

	Mehta, M. and DeWitt, D.J., 1995, September. Managing intra-operator
parallelism in parallel database systems. In VLDB (Vol. 95, pp. 382-394).

	Kalavade, A. and Lee, E.A., 1994, September. A global criticality/local phase
driven algorithm for the constrained hardware/software partitioning problem.
In Proceedings of the 3rd international workshop on Hardware/software co-design
(pp. 42-48). IEEE Computer Society Press.

	Liou, J.C. and Palis, M.A., 1997, April. A comparison of general approaches
to multiprocessor scheduling. In Parallel Processing Symposium, 1997.
Proceedings., 11th International (pp. 152-156). IEEE.

	Jeannot, E., Mercier, G. and Tessier, F., 2014. Process placement in
multicore clusters: Algorithmic issues and practical techniques.
Parallel and Distributed Systems, IEEE Transactions on, 25(4), pp.993-1002.

	Bokhari, S.H., 2012. Assignment problems in parallel and distributed
computing (Vol. 32). Springer Science & Business Media

Graph development

This section describes the different ways
users can develop graphs (either Logical or Physical)
to work with DALiuGE.

As explained in Graphs,
DALiuGE describes computations
in terms of Directed Acyclic Graphs.
Two different types of graphs are used
throughout application development:
Logical Graphs, a high-level, compact representation
of the application logic,
and Physical Graphs, a detailed description
of each individual processing step.
When submitting a graph for execution,
users submit physical graphs to the runtime component of DALiuGE.
Therefore a logical graph needs to be first translated into a physical graph
before submitting it for execution.
The individual steps that occur during this translation process
are detailed in Translation.

Given all the above,
the following graph development techniques are available
for users to creates graphs and submit them for execution:

	Use the Logical Graph Editor
to create a logical graph, which can then be translated into a physical graph.

	Manually, or automatically, create a Physical Graph from scratch.

	Use the delayed function to generate a physical graph.

Using the Logical Graph Editor

The Using the Logical Graph Editor section
has some examples on how to use the Logical Graph Editor
to compose Logical Graphs.

Please be aware that this section is old and incomplete,
and also refers to the “old” Logical Graph Editor,
which although hasn’t been removed, will soon be deprecated.
A new Logical Graph Editor called EAGLE
is currently in the works.
This new editor implements more features,
is more complete in its support,
and is visually easier to follow.
More information about it will come soon.

Directly creating a Physical Graph

In some cases using the Logical Graph Editor is not possible.
This can happen because its (currently) limited capabilities,
or because somehow some information would be lost
during the translation process.

In these cases, producing the Physical Graph directly
is still possible.
Once a Physical Graph is produced,
it can be partitioned and mapped
(see the steps in Translation)
either via the DALiuGE utilities,
or by the user directly.
Finally, the Physical Graph can be sent
to one of the Drop Managers
for execution.

Using dlg.delayed()

Application development

This section describes what developers need to do
to write a new class that can be used
as an Application Drop in DALiuGE.

Class

Developers need to write a new python class
that derives from the dlg.drop.BarrierAppDROP class.
This base class defines all methods and attributes
that derived class need to function correctly.
This new class will need a single method
called run,
that receives no arguments,
and executes the logic of the application.

I/O

An application’s input and output drops
are accessed through its
inputs and
outputs members.
Both of these are lists of drops,
and will be sorted in the same order
in which inputs and outputs
were defined in the Logical Graph.
Each element can also be queried
for its uid.

Data can be read from input drops,
and written in output drops.
To read data from an input drop,
one calls first the drop’s
open method,
which returns a descriptor to the opened drop.
Using this descriptor one can perform successive calls to
read,
which will return the data stored in the drop.
Finally, the drop’s
close method
should be called
to ensure that all internal resources are freed.

Writing data into an output drop is similar but simpler.
Application authors need only call one or more times the
write method
with the data that needs to be written.

Using the Logical Graph Editor

	General

	Components

	ShellApp

	Data

	Scatter

	Examples

	Simple scatter

These are some guidelines
on how to use the Logical Graph Editor
included in DALiuGE.

General

On the left-hand side is the palette
where different component types are shown.
Users can drag these components and drop them in the central area
where a Logical Graph will be build up.
When hovering the mouse over a component on the Logical Graph
different connection points appear on the borders of the component.
By clicking on these
and dragging the mouse over to a different component
users can draw an arrow between two components
signaling a relationship between the two.

By clicking on a component’s text
users can also change the label shown by that component
on the Logical Graph.
This is useful for readability
and has no impact on the final output of the Logical Graph.

Also when clicking on a component
the editor will show the component’s properties
on the bottom-right corner.
Users can change here some values associated to the components.
Different components support different properties.

Components

ShellApp

The ShellApp component represents a bash shell command.
The command to be run is written using
its different Arg properties.
For example, to run echo 123
users would have to write echo in Arg01
and 123 in Arg02.

When referring to the application’s inputs and outputs
in the command line
%i[X] and %o[X] can be used, respectively,
where X refers to the key property
of the referenced input/output.
These placeholders will eventually be replaced
with the file path of the corresponding inputs or outputs
when executing the command.
For inputs and outputs that are not filesystem-based
the %iDataURL[X] and %oDataURL[X] placeholders
can be used instead.

Note that sometimes an application is connected
to an input or output component
representing more than one physical input or output
(e.g., an application outside a Scatter component
connected to a Data component inside the Scatter).
In these cases the corresponding placeholder will expand
to a semicolon-delimited list of paths or URLs.
It will be the responsibility of the application
to deal with these cases.

Data

The Data component represents a payload.
When transitioning from the Logical Graph to the Physical Graph
these components generate InMemory drops currently,
but support will be added in the future
to generate drops with different storage mechanisms.

Scatter

The Scatter component represents parallel branches of execution.
Is is represented by a yellow-bordered box
that allows other components to be placed within.
All the contents of the body of a Scatter
will be replicated as parallel branches of execution
when performing the Logical Graph to Physical Graph transition
depending on the value of its num_of_copies property.

Components outside a Scatter
can be connected to components inside the Scatter.
In such cases, when he Physical Graph is generated,
the outside component will appear as connected
to the many copies generated from inside the Scatter.

Examples

Simple scatter

In this example we will have an application
producing many outputs, identical in nature,
which are then processed in parallel by a second application.
The initial application also outputs a different, single file.

To do this we drop a ShellApp into the Logical Graph.
Next to it we drop a Scatter component.
Inside the Scatter component we drop a Data component,
and next to the Data component we finally drop
a second ShellApp component.
One can then draw an arrow
from the first ShellApp to the Data component,
and a second one
from the Data component to the second ShellApp.
Finally, drop a Data component outside the Scatter
and draw an arrow from the first ShellApp component into it.
Optionally change the names of the components
for readability.

The final result should look like this:

[image: _images/examples_simpleScatter_lg.png]
If you save the Logical Graph form above,
and then generate the Physical Graph
it will look like this:

[image: _images/examples_simpleScatter_pg.png]
Here it can be clearly seen
how the Scatter component’s body
has been replicated according to its configuration.
It also shows how the first application
now produces multiple outputs.

API

The following is an extract of the most important parts of the API of DALiuGE. For
a complete reference please go to the source code.

	dlg
	dlg.event

	dlg.io

	dlg.drop

	dlg.s3_drop

	dlg.droputils

	dlg.utils

	dlg.graph_loader

	dlg.delayed

	dlg.manager
	dlg.manager.session

	dlg.manager.drop_manager

	dlg.manager.node_manager

	dlg.manager.composite_manager

	dlg.manager.rest

	dlg.manager.client

	dlg.apps
	dlg.apps.bash_shell_app

	dlg.apps.dynlib

	dlg.apps.dockerapp

	dlg.apps.socket_listener

	dlg.apps.spead_receiver

	dlg.apps.scp

	dlg.apps.archiving

	dlg.apps.crc

	dlg.dropmake
	dlg.dropmake.web.lg_web

	dlg.dropmake.pg_generator

	dlg.dropmake.scheduler

	dlg.dropmake.pg_manager

dlg

This package contains the modules implementing the core functionality of
the system.

Contents

	dlg

	dlg.event

	dlg.io

	dlg.drop

	dlg.s3_drop

	dlg.droputils

	dlg.utils

	dlg.graph_loader

	dlg.delayed

dlg.event

	
class dlg.event.Event

	An event sent through the DALiuGE framework.

Events have at least a field describing the type of event they are (instead
of having subclasses of the Event class), and therefore this class makes
sure that at least that field exists. Any other piece of information can be
attached to individual instances of this class, depending on the event type.

	
class dlg.event.EventFirer

	An object that fires events.

Objects that have an interest on receiving events from this object subscribe
to it via the subscribe method; likewise they can unsubscribe from it via
the unsubscribe method. Events are handled to the listeners by calling
their handleEvent method with the event as its sole argument.

Listeners can specify the type of event they listen to at subscription time,
or can also prefer to receive all events fired by this object if they wish
so.

	
subscribe(listener, eventType=None)

	Subscribes listener to events fired by this object. If eventType is
not None then listener will only receive events of eventType that
originate from this object, otherwise it will receive all events.

	
unsubscribe(listener, eventType=None)

	Unsubscribes listener from events fired by this object.

dlg.io

	
class dlg.io.DataIO

	A class used to read/write data stored in a particular kind of storage in an
abstract way. This base class simply declares a number of methods that
deriving classes must actually implement to handle different storage
mechanisms (e.g., a local filesystem or an NGAS server).

An instance of this class represents a particular piece of data. Thus at
construction time users must specify a storage-specific unique identifier
for the data that this object handles (e.g., a filename in the case of a
DataIO class that works with local filesystem storage, or a host:port/fileId
combination in the case of a class that works with an NGAS server).

Once an instance has been created it can be opened via its open method
indicating an open mode. If opened with OpenMode.OPEN_READ, only read
operations will be allowed on the instance, and if opened with
OpenMode.OPEN_WRITE only writing operations will be allowed.

	
close(**kwargs)

	Closes the underlying storage where the data represented by this
instance is stored, freeing underlying resources.

	
delete()

	Deletes the data represented by this DataIO

	
exists()

	Returns True if the data represented by this DataIO exists indeed in
the underlying storage mechanism

	
open(mode, **kwargs)

	Opens the underlying storage where the data represented by this instance
is stored. Depending on the value of mode subsequent calls to
self.read or self.write will succeed or fail.

	
read(count, **kwargs)

	Reads count bytes from the underlying storage.

	
write(data, **kwargs)

	Writes data into the storage

	
class dlg.io.ErrorIO

	An DataIO method that throws exceptions if any of its methods is invoked

	
delete()

	Deletes the data represented by this DataIO

	
exists()

	Returns True if the data represented by this DataIO exists indeed in
the underlying storage mechanism

	
class dlg.io.FileIO(filename, **kwargs)

	
	
delete()

	Deletes the data represented by this DataIO

	
exists()

	Returns True if the data represented by this DataIO exists indeed in
the underlying storage mechanism

	
dlg.io.IOForURL(url)

	Returns a DataIO instance that handles the given URL for reading. If no
suitable DataIO class can be found to handle the URL, None is returned.

	
class dlg.io.MemoryIO(buf, **kwargs)

	A DataIO class that reads/write from/into the BytesIO object given at
construction time

	
delete()

	Deletes the data represented by this DataIO

	
exists()

	Returns True if the data represented by this DataIO exists indeed in
the underlying storage mechanism

	
class dlg.io.NgasIO(hostname, fileId, port=7777, ngasConnectTimeout=2, ngasTimeout=2, length=-1)

	A DROP whose data is finally stored into NGAS. Since NGAS doesn’t
support appending data to existing files, we store all the data temporarily
in a file on the local filesystem and then move it to the NGAS destination

	
delete()

	Deletes the data represented by this DataIO

	
exists()

	Returns True if the data represented by this DataIO exists indeed in
the underlying storage mechanism

	
class dlg.io.NgasLiteIO(hostname, fileId, port=7777, ngasConnectTimeout=2, ngasTimeout=2, length=-1)

	An IO class whose data is finally stored into NGAS. It uses the ngaslite
module of DALiuGE instead of the full client-side libraries provided by NGAS
itself, since they might not be installed everywhere.

The ngaslite module doesn’t support the STATUS command yet, and because of
that this class will throw an error if its exists method is invoked.

	
delete()

	Deletes the data represented by this DataIO

	
exists()

	Returns True if the data represented by this DataIO exists indeed in
the underlying storage mechanism

	
class dlg.io.NullIO

	A DataIO that stores no data

	
delete()

	Deletes the data represented by this DataIO

	
exists()

	Returns True if the data represented by this DataIO exists indeed in
the underlying storage mechanism

	
class dlg.io.ShoreIO(doid, column, row, rows=1, address=None, **kwargs)

	
	
delete()

	Deletes the data represented by this DataIO

	
exists()

	Returns True if the data represented by this DataIO exists indeed in
the underlying storage mechanism

dlg.drop

Module containing the core DROP classes.

	
class dlg.drop.AbstractDROP(**kwargs)

	Base class for all DROP implementations.

A DROP is a representation of a piece of data. DROPs are created,
written once, potentially read many times, and they finally potentially
expire and get deleted. Subclasses implement different storage mechanisms
to hold the data represented by the DROP.

If the data represented by this DROP is written through this object
(i.e., calling the write method), this DROP will keep track of the
data’s size and checksum. If the data is written externally, the size and
checksum can be fed into this object for future reference.

DROPs can have consumers attached to them. ‘Normal’ consumers will
wait until the DROP they ‘consume’ (their ‘input’) moves to the
COMPLETED state and then will consume it, most typically by opening it
and reading its contents, but any other operation could also be performed.
How the consumption is triggered depends on the producer’s executionMode
flag, which dictates whether it should trigger the consumption itself or
if it should be manually triggered by an external entity. On the other hand,
streaming consumers receive the data that is written into its input
as it gets written. This mechanism is driven always by the DROP that
acts as a streaming input. Apart from receiving the data as it gets
written into the DROP, streaming consumers are also notified when the
DROPs moves to the COMPLETED state, at which point no more data should
be expected to arrive at the consumer side.

DROPs’ data can be expired automatically by the system after the DROP has
transitioned to the COMPLETED state if they are created by a DROP Manager.
Expiration can either be triggered by an interval relative to the creation
time of the DROP (via the lifespan keyword), or by specifying that the
DROP should be expired after all its consumers have finished (via the
expireAfterUse keyword). These two methods are mutually exclusive. If none
is specified no expiration occurs.

	
addConsumer(**kwargs)

	Adds a consumer to this DROP.

Consumers are normally (but not necessarily) AppDROPs that get
notified when this DROP moves into the COMPLETED or ERROR states.
This is done by firing an event of type dropCompleted to which the
consumer subscribes to.

This is one of the key mechanisms by which the DROP graph is
executed automatically. If AppDROP B consumes DROP A, then
as soon as A transitions to COMPLETED B will be notified and will
probably start its execution.

	
addProducer(**kwargs)

	Adds a producer to this DROP.

Producers are AppDROPs that write into this DROP; from the
producers’ point of view, this DROP is one of its many outputs.

When a producer has finished its execution, this DROP will be
notified via the self.producerFinished() method.

	
addStreamingConsumer(**kwargs)

	Adds a streaming consumer to this DROP.

Streaming consumers are AppDROPs that receive the data written
into this DROP as it gets written, and therefore do not need to
wait until this DROP has been moved to the COMPLETED state.

	
checksum

	The checksum value for the data represented by this DROP. Its
value is automatically calculated if the data was actually written
through this DROP (using the self.write() method directly or
indirectly). In the case that the data has been externally written, the
checksum can be set externally after the DROP has been moved to
COMPLETED or beyond.

	See

	self.checksumType

	
checksumType

	The algorithm used to compute this DROP’s data checksum. Its value
if automatically set if the data was actually written through this
DROP (using the self.write() method directly or indirectly). In
the case that the data has been externally written, the checksum type
can be set externally after the DROP has been moved to COMPLETED
or beyond.

	See

	self.checksum

	
close(**kwargs)

	Closes the given DROP descriptor, decreasing the DROP’s
internal reference count and releasing the underlying resources
associated to the descriptor.

	
consumers

	The list of ‘normal’ consumers held by this DROP.

	See

	self.addConsumer()

	
dataURL()

	A URL that points to the data referenced by this DROP. Different
DROP implementations will use different URI schemes.

	
decrRefCount()

	Decrements the reference count of this DROP by one atomically.

	
delete()

	Deletes the data represented by this DROP.

	
executionMode

	The execution mode of this DROP. If ExecutionMode.DROP it means
that this DROP will automatically trigger the execution of all its
consumers. If ExecutionMode.EXTERNAL it means that this DROP
will not trigger its consumers, and therefore an external entity will
have to do it.

	
exists()

	Returns True if the data represented by this DROP exists indeed
in the underlying storage mechanism

	
getIO()

	Returns an instance of one of the dlg.io.DataIO instances that
handles the data contents of this DROP.

	
handleEvent(**kwargs)

	Handles the arrival of a new event. Events are delivered from those
objects this DROP is subscribed to.

	
handleInterest(drop)

	Main mechanism through which a DROP handles its interest in a
second DROP it isn’t directly related to.

A call to this method should be expected for each DROP this
DROP is interested in. The default implementation does nothing,
but implementations are free to perform any action, such as subscribing
to events or storing information.

At this layer only the handling of such an interest exists. The
expression of such interest, and the invocation of this method wherever
necessary, is currently left as a responsibility of the entity creating
the DROPs. In the case of a Session in a DROPManager for
example this step would be performed using deployment-time information
contained in the dropspec dictionaries held in the session.

	
incrRefCount()

	Increments the reference count of this DROP by one atomically.

	
initialize(**kwargs)

	Performs any specific subclass initialization.

kwargs contains all the keyword arguments given at construction time,
except those used by the constructor itself. Implementations of this
method should make sure that arguments in the kwargs dictionary are
removed once they are interpreted so they are not interpreted by
accident by another method implementations that might reside in the call
hierarchy (in the case that a subclass implementation calls the parent
method implementation, which is usually the case).

	
isBeingRead()

	Returns True if the DROP is currently being read; False
otherwise

	
isCompleted()

	Checks whether this DROP is currently in the COMPLETED state or not

	
oid

	The DROP’s Object ID (OID). OIDs are unique identifiers given to
semantically different DROPs (and by consequence the data they
represent). This means that different DROPs that point to the same
data semantically speaking, either in the same or in a different
storage, will share the same OID.

	
open(**kwargs)

	Opens the DROP for reading, and returns a “DROP descriptor”
that must be used when invoking the read() and close() methods.
DROPs maintain a internal reference count based on the number
of times they are opened for reading; because of that after a successful
call to this method the corresponding close() method must eventually be
invoked. Failing to do so will result in DROPs not expiring and
getting deleted.

	
parent

	The DROP that acts as the parent of the current one. This
parent/child relationship is created by ContainerDROPs, which are
a specific kind of DROP.

	
phase

	This DROP’s phase. The phase indicates the resilience of a DROP.

	
precious

	Whether this DROP should be considered as ‘precious’ or not

	
producerFinished(**kwargs)

	Method called each time one of the producers of this DROP finishes
its execution. Once all producers have finished this DROP moves to the
COMPLETED state (or to ERROR if one of the producers is on the ERROR
state).

This is one of the key mechanisms through which the execution of a
DROP graph is accomplished. If AppDROP A produces DROP
B, as soon as A finishes its execution B will be notified and will move
itself to COMPLETED.

	
producers

	The list of producers that write to this DROP

	See

	self.addProducer()

	
read(descriptor, count=4096, **kwargs)

	Reads count bytes from the given DROP descriptor.

	
setCompleted(**kwargs)

	Moves this DROP to the COMPLETED state. This can be used when not all the
expected data has arrived for a given DROP, but it should still be moved
to COMPLETED, or when the expected amount of data held by a DROP
is not known in advanced.

	
setError(**kwargs)

	Moves this DROP to the ERROR state.

	
size

	The size of the data pointed by this DROP. Its value is
automatically calculated if the data was actually written through this
DROP (using the self.write() method directly or indirectly). In
the case that the data has been externally written, the size can be set
externally after the DROP has been moved to COMPLETED or beyond.

	
status

	The current status of this DROP.

	
streamingConsumers

	The list of ‘streaming’ consumers held by this DROP.

	See

	self.addStreamingConsumer()

	
uid

	The DROP’s Unique ID (UID). Unlike the OID, the UID is globally
different for all DROP instances, regardless of the data they
point to.

	
write(**kwargs)

	Writes the given data into this DROP. This method is only meant
to be called while the DROP is in INITIALIZED or WRITING state;
once the DROP is COMPLETE or beyond only reading is allowed.
The underlying storage mechanism is responsible for implementing the
final writing logic via the self.writeMeta() method.

	
class dlg.drop.AppDROP(**kwargs)

	An AppDROP is a DROP representing an application that reads data
from one or more DROPs (its inputs), and writes data onto one or more
DROPs (its outputs).

AppDROPs accept two different kind of inputs: “normal” and “streaming”
inputs. Normal inputs are DROPs that must be on the COMPLETED state
(and therefore their data must be fully written) before this application is
run, while streaming inputs are DROPs that feed chunks of data into
this application as the data gets written into them.

This class contains two methods that should be overwritten as needed by
subclasses: dropCompleted, invoked when input DROPs move to
COMPLETED, and dataWritten, invoked with the data coming from streaming
inputs.

How and when applications are executed is completely up to the user, and is
not enforced by this base class. Some applications might need to be run at
initialize time, while other might start during the first invocation of
dataWritten. A common scenario anyway is to start an application only
after all its inputs have moved to COMPLETED (implying that none of them is
an streaming input); for these cases see the BarrierAppDROP.

	
dataWritten(uid, data)

	Callback invoked when data has been written into the DROP with
UID uid (which is one of the streaming inputs of this AppDROP).
By default no action is performed

	
dropCompleted(uid, drop_state)

	Callback invoked when the DROP with UID uid (which is either a
normal or a streaming input of this AppDROP) has moved to the
COMPLETED or ERROR state. By default no action is performed.

	
execStatus

	The execution status of this AppDROP

	
handleEvent(e)

	Handles the arrival of a new event. Events are delivered from those
objects this DROP is subscribed to.

	
initialize(**kwargs)

	Performs any specific subclass initialization.

kwargs contains all the keyword arguments given at construction time,
except those used by the constructor itself. Implementations of this
method should make sure that arguments in the kwargs dictionary are
removed once they are interpreted so they are not interpreted by
accident by another method implementations that might reside in the call
hierarchy (in the case that a subclass implementation calls the parent
method implementation, which is usually the case).

	
inputs

	The list of inputs set into this AppDROP

	
outputs

	The list of outputs set into this AppDROP

	
streamingInputs

	The list of streaming inputs set into this AppDROP

	
class dlg.drop.BarrierAppDROP(**kwargs)

	A BarrierAppDROP is an InputFireAppDROP that waits for all its inputs to
complete, effectively blocking the flow of the graph execution.

	
initialize(**kwargs)

	Performs any specific subclass initialization.

kwargs contains all the keyword arguments given at construction time,
except those used by the constructor itself. Implementations of this
method should make sure that arguments in the kwargs dictionary are
removed once they are interpreted so they are not interpreted by
accident by another method implementations that might reside in the call
hierarchy (in the case that a subclass implementation calls the parent
method implementation, which is usually the case).

	
class dlg.drop.ContainerDROP(**kwargs)

	A DROP that doesn’t directly point to some piece of data, but instead
holds references to other DROPs (its children), and from them its own
internal state is deduced.

Because of its nature, ContainerDROPs cannot be written to directly,
and likewise they cannot be read from directly. One instead has to pay
attention to its “children” DROPs if I/O must be performed.

	
dataURL()

	A URL that points to the data referenced by this DROP. Different
DROP implementations will use different URI schemes.

	
delete()

	Deletes the data represented by this DROP.

	
exists()

	Returns True if the data represented by this DROP exists indeed
in the underlying storage mechanism

	
getIO()

	Returns an instance of one of the dlg.io.DataIO instances that
handles the data contents of this DROP.

	
initialize(**kwargs)

	Performs any specific subclass initialization.

kwargs contains all the keyword arguments given at construction time,
except those used by the constructor itself. Implementations of this
method should make sure that arguments in the kwargs dictionary are
removed once they are interpreted so they are not interpreted by
accident by another method implementations that might reside in the call
hierarchy (in the case that a subclass implementation calls the parent
method implementation, which is usually the case).

	
class dlg.drop.DirectoryContainer(**kwargs)

	A ContainerDROP that represents a filesystem directory. It only allows
FileDROPs and DirectoryContainers to be added as children. Children
can only be added if they are placed directly within the directory
represented by this DirectoryContainer.

	
delete()

	Deletes the data represented by this DROP.

	
exists()

	Returns True if the data represented by this DROP exists indeed
in the underlying storage mechanism

	
initialize(**kwargs)

	Performs any specific subclass initialization.

kwargs contains all the keyword arguments given at construction time,
except those used by the constructor itself. Implementations of this
method should make sure that arguments in the kwargs dictionary are
removed once they are interpreted so they are not interpreted by
accident by another method implementations that might reside in the call
hierarchy (in the case that a subclass implementation calls the parent
method implementation, which is usually the case).

	
class dlg.drop.FileDROP(**kwargs)

	A DROP that points to data stored in a mounted filesystem.

Users can (but usually don’t need to) specify both a filepath and a
dirname parameter for each FileDrop. The combination of these two parameters
will determine the final location of the file backed up by this drop on the
underlying filesystem. When no filepath is provided, the drop’s UID will be
used as a filename. When a relative filepath is provided, it is relative to
dirname. When an absolute filepath is given, it is used as-is.
When a relative dirname is provided, it is relative to the base directory
of the currently running session (i.e., a directory with the session ID as a
name, placed within the currently working directory of the Node Manager
hosting that session). If dirname is absolute, it is used as-is.

In some cases drops are created outside the context of a session, most
notably during unit tests. In these cases the base directory is a fixed
location under /tmp.

The following table summarizes the calculation of the final path used by
the FileDrop class depending on its parameters:

	.

	filepath

	dirname

	empty

	relative

	absolute

	empty

	/$B/$u

	/$B/$f

	/$f

	relative

	/$B/$d/$u

	/$B/$d/$f

	ERROR

	absolute

	/$d/$u

	/$d/$f

	ERROR

In the table, $f is the value of filepath, $d is the value of
dirname, $u is the drop’s UID and $B is the base directory for
this drop’s session, namelly /the/cwd/$session_id.

	
delete()

	Deletes the data represented by this DROP.

	
getIO()

	Returns an instance of one of the dlg.io.DataIO instances that
handles the data contents of this DROP.

	
initialize(**kwargs)

	FileDROP-specific initialization.

	
class dlg.drop.InMemoryDROP(**kwargs)

	A DROP that points data stored in memory.

	
getIO()

	Returns an instance of one of the dlg.io.DataIO instances that
handles the data contents of this DROP.

	
initialize(**kwargs)

	Performs any specific subclass initialization.

kwargs contains all the keyword arguments given at construction time,
except those used by the constructor itself. Implementations of this
method should make sure that arguments in the kwargs dictionary are
removed once they are interpreted so they are not interpreted by
accident by another method implementations that might reside in the call
hierarchy (in the case that a subclass implementation calls the parent
method implementation, which is usually the case).

	
class dlg.drop.InputFiredAppDROP(**kwargs)

	An InputFiredAppDROP accepts no streaming inputs and waits until a given
amount of inputs (called effective inputs) have moved to COMPLETED to
execute its ‘run’ method, which must be overwritten by subclasses. This way,
this application allows to continue the execution of the graph given a
minimum amount of inputs being ready. The transitions of subsequent inputs
to the COMPLETED state have no effect.

Normally only one call to the run method will happen per application.
However users can override this by specifying a different number of tries
before finally giving up.

The amount of effective inputs must be less or equal to the amount of inputs
added to this application once the graph is being executed. The special
value of -1 means that all inputs are considered as effective, in which case
this class acts as a BarrierAppDROP, effectively blocking until all its
inputs have moved to the COMPLETED state.

An input error threshold controls the behavior of the application given an
error in one or more of its inputs (i.e., a DROP moving to the ERROR state).
The threshold is a value within 0 and 100 that indicates the tolerance
to erroneous effective inputs, and after which the application will not be
run but moved to the ERROR state itself instead.

	
dropCompleted(uid, drop_state)

	Callback invoked when the DROP with UID uid (which is either a
normal or a streaming input of this AppDROP) has moved to the
COMPLETED or ERROR state. By default no action is performed.

	
execute(**kwargs)

	Manually trigger the execution of this application.

This method is normally invoked internally when the application detects
all its inputs are COMPLETED.

	
exists()

	Returns True if the data represented by this DROP exists indeed
in the underlying storage mechanism

	
initialize(**kwargs)

	Performs any specific subclass initialization.

kwargs contains all the keyword arguments given at construction time,
except those used by the constructor itself. Implementations of this
method should make sure that arguments in the kwargs dictionary are
removed once they are interpreted so they are not interpreted by
accident by another method implementations that might reside in the call
hierarchy (in the case that a subclass implementation calls the parent
method implementation, which is usually the case).

	
run()

	Run this application. It can be safely assumed that at this point all
the required inputs are COMPLETED.

	
class dlg.drop.ListAsDict(my_set)

	A list that adds drop UIDs to a set as they get appended to the list

	
append(drop)

	L.append(object) – append object to end

	
class dlg.drop.NgasDROP(**kwargs)

	A DROP that points to data stored in an NGAS server

	
getIO()

	Returns an instance of one of the dlg.io.DataIO instances that
handles the data contents of this DROP.

	
initialize(**kwargs)

	Performs any specific subclass initialization.

kwargs contains all the keyword arguments given at construction time,
except those used by the constructor itself. Implementations of this
method should make sure that arguments in the kwargs dictionary are
removed once they are interpreted so they are not interpreted by
accident by another method implementations that might reside in the call
hierarchy (in the case that a subclass implementation calls the parent
method implementation, which is usually the case).

	
class dlg.drop.NullDROP(**kwargs)

	A DROP that doesn’t store any data.

	
getIO()

	Returns an instance of one of the dlg.io.DataIO instances that
handles the data contents of this DROP.

	
class dlg.drop.PathBasedDrop

	Base class for data drops that handle paths (i.e., file and directory drops)

	
class dlg.drop.RDBMSDrop(**kwargs)

	A Drop that stores data in a table of a relational database

	
getIO()

	Returns an instance of one of the dlg.io.DataIO instances that
handles the data contents of this DROP.

	
initialize(**kwargs)

	Performs any specific subclass initialization.

kwargs contains all the keyword arguments given at construction time,
except those used by the constructor itself. Implementations of this
method should make sure that arguments in the kwargs dictionary are
removed once they are interpreted so they are not interpreted by
accident by another method implementations that might reside in the call
hierarchy (in the case that a subclass implementation calls the parent
method implementation, which is usually the case).

	
insert(vals)

	Inserts the values contained in the vals dictionary into the
underlying table. The keys of vals are used as the column names.

	
select(columns=None, condition=None, vals=())

	Returns the selected values from the table. Users can constrain the
result set by specifying a list of columns to be returned (otherwise
all table columns are returned) and a condition to be applied,
in which case a list of vals to be applied as query parameters can
also be given.

	
class dlg.drop.ShoreDROP(**kwargs)

	
	
getIO()

	Returns an instance of one of the dlg.io.DataIO instances that
handles the data contents of this DROP.

	
initialize(**kwargs)

	Performs any specific subclass initialization.

kwargs contains all the keyword arguments given at construction time,
except those used by the constructor itself. Implementations of this
method should make sure that arguments in the kwargs dictionary are
removed once they are interpreted so they are not interpreted by
accident by another method implementations that might reside in the call
hierarchy (in the case that a subclass implementation calls the parent
method implementation, which is usually the case).

	
class dlg.drop.dropdict

	An intermediate representation of a DROP that can be easily serialized
into a transport format such as JSON or XML.

This dictionary holds all the important information needed to call any given
DROP constructor. The most essential pieces of information are the
DROP’s OID, and its type (which determines the class to instantiate).
Depending on the type more fields will be required. This class doesn’t
enforce these requirements though, as it only acts as an information
container.

This class also offers a few utility methods to make it look more like an
actual DROP class. This way, users can use the same set of methods
both to create DROPs representations (i.e., instances of this class)
and actual DROP instances.

Users of this class are, for example, the graph_loader module which deals
with JSON -> DROP representation transformations, and the different
repositories where graph templates are expected to be found by the
DROPManager.

dlg.s3_drop

Drops that interact with AWS S3

	
class dlg.s3_drop.S3DROP(oid, uid, **kwargs)

	A DROP that points to data stored in S3

	
bucket

	Returns the bucket name
:return: the bucket name

	
exists()

	Returns True if the data represented by this DROP exists indeed
in the underlying storage mechanism

	
getIO()

	This type of DROP cannot be accessed directly
:return:

	
initialize(**kwargs)

	
	Parameters

	kwargs – the dictionary of arguments

	
key

	Return the S3 key
:return: the S3 key

	
path

	Returns the path to the S3 object
:return: the path

	
size()

	The size of the data pointed by this DROP. Its value is
automatically calculated if the data was actually written through this
DROP (using the self.write() method directly or indirectly). In
the case that the data has been externally written, the size can be set
externally after the DROP has been moved to COMPLETED or beyond.

dlg.droputils

Utility methods and classes to be used when interacting with DROPs

	
class dlg.droputils.DROPFile(drop)

	A file-like object (currently only supporting the read() operation, more to
be added in the future) that wraps the DROP given at construction
time.

Depending on the underlying storage of the data the file-like object
returned by this method will directly access the data pointed by the
DROP if possible, or will access it through the DROP methods
instead.

Objects of this class will automatically close themselves when no referenced
anymore (i.e., when __del__ is called), but users should still try to invoke
close() eagerly to free underlying resources.

Objects of this class can also be used in a with context.

	
class dlg.droputils.DROPWaiterCtx(test, drops, timeout=1)

	Class used by unit tests to trigger the execution of a physical graph and
wait until the given set of DROPs have reached its COMPLETED status.

It does so by appending an EvtConsumer consumer to each DROP before they are
used in the execution, and finally checking that the events have been set.
It should be used like this inside a test class:

There is a physical graph that looks like: a -> b -> c
with DROPWaiterCtx(self, c):
 a.write('a')
 a.setCompleted()

	
class dlg.droputils.EvtConsumer(evt)

	Small utility class that sets the internal flag of the given threading.Event
object when consuming a DROP. Used throughout the tests as a barrier to wait
until all DROPs of a given graph have executed.

	
dlg.droputils.allDropContents(drop, bufsize=4096)

	Returns all the data contained in a given DROP

	
dlg.droputils.breadFirstTraverse(toVisit)

	Breadth-first iterator for a DROP graph.

This iterator yields a tuple where the first item is the node being visited,
and the second is a list of nodes that will be visited subsequently.
Callers can alter this list in order to remove certain nodes from the
graph traversal process.

This implementation is non-recursive.

	
dlg.droputils.copyDropContents(source, target, bufsize=4096)

	Manually copies data from one DROP into another, in bufsize steps

	
dlg.droputils.depthFirstTraverse(node, visited=[])

	Depth-first iterator for a DROP graph.

This iterator yields a tuple where the first item is the node being visited,
and the second is a list of nodes that will be visited subsequently.
Callers can alter this list in order to remove certain nodes from the
graph traversal process.

This implementation is recursive.

	
dlg.droputils.getDownstreamObjects(drop)

	Returns a list of all direct “downstream” DROPs for the given
DROP. An DROP A is “downstream” with respect to DROP B if
any of the following conditions are true:
* A is an output of B (therefore B is an AppDROP)
* A is a normal or streaming consumer of B (and A is therefore an AppDROP)

In practice if A is a downstream DROP of B means that it cannot
advance to the COMPLETED state until B does so.

	
dlg.droputils.getLeafNodes(nodes)

	Returns a list of all the “leaf nodes” of the graph pointed by nodes.
nodes is either a single DROP, or a list of DROPs.

	
dlg.droputils.getUpstreamObjects(drop)

	Returns a list of all direct “upstream” DROPs for the given
DROP. An DROP A is “upstream” with respect to DROP B if
any of the following conditions are true:

	A is a producer of B (therefore A is an AppDROP)

	A is a normal or streaming input of B (and B is therefore an AppDROP)

In practice if A is an upstream DROP of B means that it must be moved
to the COMPLETED state before B can do so.

	
dlg.droputils.get_leaves(pg_spec)

	Returns a set with the OIDs of the dropspecs that are the leaves of the given physical
graph specification.

	
dlg.droputils.get_roots(pg_spec)

	Returns a set with the OIDs of the dropspecs that are the roots of the given physical
graph specification.

	
dlg.droputils.has_path(x)

	Returns True if x has a path attribute

	
dlg.droputils.listify(o)

	If o is already a list return it as is; if o is a tuple returns a list
containing the elements contained in the tuple; otherwise returns a list
with o being its only element

	
dlg.droputils.replace_dataurl_placeholders(cmd, inputs, outputs)

	Replaces any placeholder found in cmd with the dataURL property of the
respective input or output Drop from inputs or outputs.
Placeholders have the different formats:

	%iDataURLN, with N starting from 0, indicates the path of the N-th
element from the inputs argument; likewise for %oDataURLN.

	%iDataURL[X] indicates the path of the input with UID X; likewise
for %oDataURL[X].

	
dlg.droputils.replace_path_placeholders(cmd, inputs, outputs)

	Replaces any placeholder found in cmd with the path of the respective
input or output Drop from inputs or outputs.
Placeholders have the different formats:

	%iN, with N starting from 0, indicates the path of the N-th element
from the inputs argument; likewise for %oN.

	%i[X] indicates the path of the input with UID X; likewise for
%o[X].

dlg.utils

Module containing miscellaneous utility classes and functions.

	
class dlg.utils.ZlibCompressedStream(content)

	An object that takes a input of uncompressed stream and returns a compressed version of its
contents when .read() is read.

	
class dlg.utils.ZlibUncompressedStream(content)

	A class that reads gzip-compressed content and returns uncompressed content
each time its read() method is called.

	
dlg.utils.b2s(b, enc='utf8')

	Converts bytes into a string

	
dlg.utils.browse_service(zc, service_type_name, protocol, callback)

	ZeroConf: Browse for services based on service type and protocol

	callback signature: callback(zeroconf, service_type, name, state_change)

	zeroconf: ZeroConf object
service_type: zeroconf service
name: service name
state_change: ServiceStateChange type (Added, Removed)

Returns ZeroConf object

	
dlg.utils.check_port(host, port, timeout=0, checking_open=True, return_socket=False)

	Checks that the port specified by host:port is either open or
closed (depending on the value of checking_open) within a given
timeout.
When checking for an open port, this method will keep trying to connect to
it either until the given timeout has expired or until the socket is
found open. When checking for a closed port this method will keep trying to
connect to it until the connection is unsuccessful, or until the timeout
expires.
Additionally, if some data is passed and the method is checking_open
then data will be written to the socket if it connects successfully.

This method returns True if the port was found on the expected state
within the time limit, and False otherwise.

	
dlg.utils.connect_to(host, port, timeout=None)

	Connects to host:port within the given timeout and return the
connected socket. If no connection could be established a socket.timeout
error is raised

	
dlg.utils.createDirIfMissing(path)

	Creates the given directory if it doesn’t exist

	
dlg.utils.deregister_service(zc, info)

	ZeroConf: Deregister service

	
dlg.utils.escapeQuotes(s, singleQuotes=True, doubleQuotes=True)

	Escapes single and double quotes in a string. Useful to include commands
in a shell invocation or similar.

	
dlg.utils.fname_to_pipname(fname)

	Converts a graph filename (assuming it’s a .json file) to its “pipeline”
name (the basename without the extension).

	
dlg.utils.getDlgDir()

	Returns the root of the directory structure used by the DALiuGE framework at
runtime.

	
dlg.utils.getDlgLogsDir()

	Returns the location of the directory used by the DALiuGE framework to store
its logs. If createIfMissing is True, the directory will be created if it
currently doesn’t exist

	
dlg.utils.getDlgPidDir()

	Returns the location of the directory used by the DALiuGE framework to store
its PIDs. If createIfMissing is True, the directory will be created if it
currently doesn’t exist

	
dlg.utils.get_all_ipv4_addresses()

	Get a list of all IPv4 interfaces found in this computer

	
dlg.utils.get_local_ip_addr()

	Enumerate all interfaces and return bound IP addresses (exclude localhost)

	
dlg.utils.isabs(path)

	Like os.path.isabs, but handles None

	
dlg.utils.object_tracking(name)

	Returns a decorator that helps classes track which object is currently under
execution. This is done via a thread local object, which can be accessed via
the ‘tlocal’ attribute of the returned decorator.

	
dlg.utils.portIsClosed(host, port, timeout)

	Checks if a given host/port is closed, with a given timeout.

	
dlg.utils.portIsOpen(host, port, timeout=0)

	Checks if a given host/port is open, with a given timeout.

	
dlg.utils.prepare_sql(sql, paramstyle, data=())

	Prepares the given SQL statement for proper execution depending on the
parameter style supported by the database driver. For this the SQL statement
must be written using the “{X}” or “{}” placeholders in place for each,
parameter which is a style-agnostic parameter notation.

This method returns a tuple containing the prepared SQL statement and the
values to be bound into the query as required by the driver.

	
dlg.utils.register_service(zc, service_type_name, service_name, ipaddr, port, protocol='tcp')

	ZeroConf: Register service type, protocol, ipaddr and port

Returns ZeroConf object and ServiceInfo object

	
dlg.utils.terminate_or_kill(proc, timeout)

	Terminates a process and waits until it has completed its execution within
the given timeout. If the process is still alive after the timeout it is
killed.

	
dlg.utils.to_externally_contactable_host(host, prefer_local=False)

	Turns host, which is an address used to bind a local service,
into a host that can be used to externally contact that service.

This should be used when there is no other way to find out how a client
to that service is going to connect to it.

	
dlg.utils.write_to(host, port, data, timeout=None)

	Connects to host:port within the given timeout and write the given
piece of data into the connected socket.

	
dlg.utils.zmq_safe(host_or_addr)

	Converts host_or_addr to a format that is safe for ZMQ to use

dlg.graph_loader

Module containing functions to load a fully-functional DROP graph from its
full JSON representation.

	
dlg.graph_loader.addLink(linkType, lhDropSpec, rhOID, force=False)

	Adds a link from lhDropSpec to point to rhOID. The link type (e.g., a
consumer) is signaled by linkType.

	
dlg.graph_loader.loadDropSpecs(dropSpecList)

	Loads the DROP definitions from dropSpectList, checks that
the DROPs are correctly specified, and return a dictionary containing
all DROP specifications (i.e., a dictionary of dictionaries) keyed on
the OID of each DROP. Unlike readObjectGraph and readObjectGraphS,
this method doesn’t actually create the DROPs themselves.

dlg.delayed

	
dlg.delayed(x, *args, **kwargs)

	Like dask.delayed, but quietly swallowing anything other than nout

dlg.manager

This package contains all python modules implementing the DROP
Manager concepts, including their external interface, a web UI and a client

Contents

	dlg.manager

	dlg.manager.session

	dlg.manager.drop_manager

	dlg.manager.node_manager

	dlg.manager.composite_manager

	dlg.manager.rest

	dlg.manager.client

dlg.manager.session

Module containing the logic of a session – a given graph execution

dlg.manager.drop_manager

Module containing the base interface for all DROP managers.

	
class dlg.manager.drop_manager.DROPManager

	Base class for all DROPManagers.

A DROPManager, as the name states, manages the creation and execution of
DROPs. In order to support parallel DROP graphs execution, a DROPManager
separates them into “sessions”.

	Sessions follow a simple lifecycle:

	
	They are created in the PRISTINE status

	One or more graph specifications are appended to them, which can also
be linked together, building up the final graph specification. While
building the graph the session is in the BUILDING status.

	Once all graph specifications have been appended and linked together,
the graph is deployed, meaning that the DROPs are effectively created.
During this process the session transitions between the DEPLOYING and
RUNNING states.

	One all DROPs contained in a session have transitioned to COMPLETED (or
ERROR, if there has been an error during the execution) the session moves
to FINISHED.

Graph specifications are currently accepted in the form of a list of
dictionaries, where each dictionary is a DROP specification. A DROP
specification in turn consists on key/value pairs in the dictionary which
state the type of DROP, some key parameters, and instance-specific
parameters as well used to create the DROP.

	
addGraphSpec(sessionId, graphSpec)

	Adds a graph specification graphSpec (i.e., a description of the DROPs
that should be created) to the current graph specification held by
session sessionId.

	
createSession(sessionId)

	Creates a session on this DROPManager with id sessionId. A session
represents an isolated DROP graph execution.

	
deploySession(sessionId, completedDrops=[])

	Deploys the graph specification held by session sessionId, effectively
creating all DROPs, linking them together, and moving those whose UID
is in completedDrops to the COMPLETED state.

	
destroySession(sessionId)

	Destroys the session sessionId

	
getGraph(sessionId)

	Returns a specification of the graph currently held by session
sessionId.

	
getGraphSize(sessionId)

	Returns the number of drops contained in the physical graph attached
to sessionId.

	
getGraphStatus(sessionId)

	Returns the status of the graph being executed in session sessionId.

	
getSessionIds()

	Returns the IDs of the sessions currently held by this DROPManager.

	
getSessionStatus(sessionId)

	Returns the status of the session sessionId.

dlg.manager.node_manager

Module containing the NodeManager, which directly manages DROP instances, and
thus represents the bottom of the DROP management hierarchy.

	
class dlg.manager.node_manager.ErrorStatusListener(session, error_listener)

	An event listener that passes down the erroneous drop to an error handler

	
class dlg.manager.node_manager.NodeManager(useDLM=True, dlgPath=None, error_listener=None, event_listeners=[], max_threads=0, host=None, rpc_port=6666, events_port=5555)

	

	
class dlg.manager.node_manager.NodeManagerBase(useDLM=True, dlgPath=None, error_listener=None, event_listeners=[], max_threads=0)

	Base class for a DROPManager that creates and holds references to DROPs.

A NodeManagerBase is the ultimate responsible of handling DROPs. It does so not
directly, but via Sessions, which represent and encapsulate separate,
independent DROP graph executions. All DROPs created by the
different Sessions are also given to a common DataLifecycleManager, which
takes care of expiring them when needed and replicating them.

Since a NodeManagerBase can handle more than one session, in principle only one
NodeManagerBase is needed for each computing node, thus its name.

	
addGraphSpec(sessionId, graphSpec)

	Adds a graph specification graphSpec (i.e., a description of the DROPs
that should be created) to the current graph specification held by
session sessionId.

	
createSession(sessionId)

	Creates a session on this DROPManager with id sessionId. A session
represents an isolated DROP graph execution.

	
deliver_event(evt)

	Method called by subclasses when a new event has arrived through the
subscription mechanism.

	
deploySession(sessionId, completedDrops=[])

	Deploys the graph specification held by session sessionId, effectively
creating all DROPs, linking them together, and moving those whose UID
is in completedDrops to the COMPLETED state.

	
destroySession(sessionId)

	Destroys the session sessionId

	
getGraph(sessionId)

	Returns a specification of the graph currently held by session
sessionId.

	
getGraphSize(sessionId)

	Returns the number of drops contained in the physical graph attached
to sessionId.

	
getGraphStatus(sessionId)

	Returns the status of the graph being executed in session sessionId.

	
getSessionIds()

	Returns the IDs of the sessions currently held by this DROPManager.

	
getSessionStatus(sessionId)

	Returns the status of the session sessionId.

	
get_rpc_client(hostname, port)

	Creates an RPC client connected to the node manager running in
host:port, and its closing method, as a 2-tuple.

	
publish_event(evt)

	Publishes the event evt for other Node Managers to receive it

	
shutdown()

	Stops any pending background task run by this Node Manager

	
start()

	Starts any background task required by this Node Manager

	
subscribe(host, port)

	Subscribes this Node Manager to events published in from host:port

	
class dlg.manager.node_manager.RpcMixIn(host, port)

	

dlg.manager.composite_manager

dlg.manager.rest

Module containing the REST layer that exposes the methods of the different
Data Managers (DROPManager and DataIslandManager) to the outside world.

	
class dlg.manager.rest.CompositeManagerRestServer(dm, maxreqsize=10)

	A REST server for DataIslandManagers. It includes mappings for DIM-specific
methods.

	
initializeSpecifics(app)

	Methods through which subclasses can initialize other mappings on top of
the default ones and perform other DataManager-specific actions.
The default implementation does nothing.

	
class dlg.manager.rest.ManagerRestServer(dm, maxreqsize=10)

	An object that wraps a DataManager and exposes its methods via a REST
interface. The server is started via the start method in a separate thread
and runs until the process is shut down.

This REST server currently also serves HTML pages in some of its methods
(i.e. those not under /api).

	
initializeSpecifics(app)

	Methods through which subclasses can initialize other mappings on top of
the default ones and perform other DataManager-specific actions.
The default implementation does nothing.

	
class dlg.manager.rest.MasterManagerRestServer(dm, maxreqsize=10)

	
	
initializeSpecifics(app)

	Methods through which subclasses can initialize other mappings on top of
the default ones and perform other DataManager-specific actions.
The default implementation does nothing.

	
class dlg.manager.rest.NMRestServer(dm, maxreqsize=10)

	A REST server for NodeManagers. It includes mappings for NM-specific
methods and the mapping for the main visualization HTML pages.

	
initializeSpecifics(app)

	Methods through which subclasses can initialize other mappings on top of
the default ones and perform other DataManager-specific actions.
The default implementation does nothing.

dlg.manager.client

	
class dlg.manager.client.BaseDROPManagerClient(host, port, timeout)

	Base class for REST clients that talk to the DROP managers.

	
addGraphSpec(sessionId, graphSpec)

	Appends a graph to session sessionId, without creating its DROPs yet,
but checking that the graph looks correct

	
append_graph(sessionId, graphSpec)

	Appends a graph to session sessionId, without creating its DROPs yet,
but checking that the graph looks correct

	
createSession(sessionId)

	Creates a session with sessionId

	
create_session(sessionId)

	Creates a session with sessionId

	
deploySession(sessionId, completed_uids=[])

	Deploys session sessionId, effectively creating its DROPs and triggering
the execution of the graph

	
deploy_session(sessionId, completed_uids=[])

	Deploys session sessionId, effectively creating its DROPs and triggering
the execution of the graph

	
destroySession(sessionId)

	Destroys session sessionId

	
destroy_session(sessionId)

	Destroys session sessionId

	
getGraph(sessionId)

	Returns a dictionary where the key are the DROP UIDs, and the values are
the DROP specifications.

	
getGraphSize(sessionId)

	Returns the size of the graph of session sessionId

	
getGraphStatus(sessionId)

	Returns a dictionary where the keys are DROP UIDs and the values are
their corresponding status.

	
getSessionStatus(sessionId)

	Returns the status of session sessionId

	
graph(sessionId)

	Returns a dictionary where the key are the DROP UIDs, and the values are
the DROP specifications.

	
graph_size(sessionId)

	Returns the size of the graph of session sessionId

	
graph_status(sessionId)

	Returns a dictionary where the keys are DROP UIDs and the values are
their corresponding status.

	
session(sessionId)

	Returns the details of sessions sessionId

	
session_status(sessionId)

	Returns the status of session sessionId

	
sessions()

	Returns a list of all the sessions currently held by the DROP Manager

	
class dlg.manager.client.CompositeManagerClient(host, port, timeout)

	

	
class dlg.manager.client.DataIslandManagerClient(host='localhost', port=8001, timeout=10)

	A DataIslandManager REST client

	
class dlg.manager.client.MasterManagerClient(host='localhost', port=8002, timeout=10)

	A MasterManager REST client

	
class dlg.manager.client.NodeManagerClient(host='localhost', port=8000, timeout=10)

	A NodeManager REST client

dlg.apps

This package contains several general-purpose applications in form of
DROPs that we have developed as examples and for real-life use. Most of them
are based on the BarrierAppDROP.

Contents

	dlg.apps

	dlg.apps.bash_shell_app

	dlg.apps.dynlib

	dlg.apps.dockerapp

	dlg.apps.socket_listener

	dlg.apps.spead_receiver

	dlg.apps.scp

	dlg.apps.archiving

	dlg.apps.crc

dlg.apps.bash_shell_app

Module containing bash-related AppDrops

The module contains four classes that offer running bash commands in different
execution modes; that is, in fully batch mode, or with its input and/or output
as a stream of data to the previous/next application.

	
class dlg.apps.bash_shell_app.BashShellApp(**kwargs)

	An app that runs a bash command in batch mode; that is, it waits until all
its inputs are COMPLETED. It also doesn’t output a stream of data; see
StreamingOutputBashApp for those cases.

	
run()

	Run this application. It can be safely assumed that at this point all
the required inputs are COMPLETED.

	
class dlg.apps.bash_shell_app.BashShellBase

	Common class for BashShell apps. It simply requires a command to be
specified.

	
class dlg.apps.bash_shell_app.StreamingInputBashApp(**kwargs)

	An app that runs a bash command that consumes data from stdin.

The streaming of data that appears on stdin takes place outside the
framework; what is streamed through the framework is the information needed
to establish the streaming channel. This information is also used to kick
this application off.

	
class dlg.apps.bash_shell_app.StreamingInputBashAppBase(**kwargs)

	Base class for bash command applications that consume a stream of incoming
data.

	
dataWritten(uid, data)

	Callback invoked when data has been written into the DROP with
UID uid (which is one of the streaming inputs of this AppDROP).
By default no action is performed

	
dropCompleted(uid, drop_state)

	Callback invoked when the DROP with UID uid (which is either a
normal or a streaming input of this AppDROP) has moved to the
COMPLETED or ERROR state. By default no action is performed.

	
initialize(**kwargs)

	Performs any specific subclass initialization.

kwargs contains all the keyword arguments given at construction time,
except those used by the constructor itself. Implementations of this
method should make sure that arguments in the kwargs dictionary are
removed once they are interpreted so they are not interpreted by
accident by another method implementations that might reside in the call
hierarchy (in the case that a subclass implementation calls the parent
method implementation, which is usually the case).

	
class dlg.apps.bash_shell_app.StreamingInputOutputBashApp(**kwargs)

	Like StreamingInputBashApp, but its stdout is also a stream of data that is
fed into the next application.

	
class dlg.apps.bash_shell_app.StreamingOutputBashApp(**kwargs)

	Like BashShellApp, but its stdout is a stream of data that is fed into the
next application.

	
run()

	Run this application. It can be safely assumed that at this point all
the required inputs are COMPLETED.

	
dlg.apps.bash_shell_app.prepare_input_channel(data)

	Prepares an input channel that will serve as the stdin of a bash command.
Depending on the contents of data the channel will be a named pipe or a
socket.

	
dlg.apps.bash_shell_app.prepare_output_channel(this_node, out_drop)

	Prepares an output channel that will serve as the stdout of a bash command.
Depending on the values of this_node and out_drop the channel will
be a named pipe or a socket.

	
dlg.apps.bash_shell_app.run_bash(cmd, app_uid, session_id, inputs, outputs, stdin=None, stdout=-1)

	Runs the given cmd. If any inputs and/or outputs are given
(dictionaries of uid:drop elements) they are used to replace any placeholder
value in cmd with either drop paths or dataURLs.

stdin indicates at file descriptor or file object to use as the standard
input of the bash process. If not given no stdin is given to the process.

Similarly, stdout is a file descriptor or file object where the standard
output of the process is piped to. If not given it is consumed by this
method and potentially logged.

dlg.apps.dynlib

	
class dlg.apps.dynlib.CDlgApp

	

	
class dlg.apps.dynlib.CDlgInput

	

	
class dlg.apps.dynlib.CDlgOutput

	

	
class dlg.apps.dynlib.CDlgStreamingInput

	

	
class dlg.apps.dynlib.DynlibApp(**kwargs)

	Loads a dynamic library into the current process and runs it

	
run()

	Run this application. It can be safely assumed that at this point all
the required inputs are COMPLETED.

	
class dlg.apps.dynlib.DynlibProcApp(**kwargs)

	Loads a dynamic library in a different process and runs it

	
initialize(**kwargs)

	Performs any specific subclass initialization.

kwargs contains all the keyword arguments given at construction time,
except those used by the constructor itself. Implementations of this
method should make sure that arguments in the kwargs dictionary are
removed once they are interpreted so they are not interpreted by
accident by another method implementations that might reside in the call
hierarchy (in the case that a subclass implementation calls the parent
method implementation, which is usually the case).

	
run()

	Run this application. It can be safely assumed that at this point all
the required inputs are COMPLETED.

	
class dlg.apps.dynlib.DynlibStreamApp(**kwargs)

	
	
dataWritten(uid, data)

	Callback invoked when data has been written into the DROP with
UID uid (which is one of the streaming inputs of this AppDROP).
By default no action is performed

	
dropCompleted(uid, drop_state)

	Callback invoked when the DROP with UID uid (which is either a
normal or a streaming input of this AppDROP) has moved to the
COMPLETED or ERROR state. By default no action is performed.

	
initialize(**kwargs)

	Performs any specific subclass initialization.

kwargs contains all the keyword arguments given at construction time,
except those used by the constructor itself. Implementations of this
method should make sure that arguments in the kwargs dictionary are
removed once they are interpreted so they are not interpreted by
accident by another method implementations that might reside in the call
hierarchy (in the case that a subclass implementation calls the parent
method implementation, which is usually the case).

	
exception dlg.apps.dynlib.InvalidLibrary

	

	
exception dlg.apps.dynlib.finish_subprocess

	

	
dlg.apps.dynlib.get_from_subprocess(proc, q)

	Gets elements from the queue, checking that the process is still alive

	
dlg.apps.dynlib.load_and_init(libname, oid, uid, params)

	Loads and initializes libname with the given parameters, prepares the
corresponding C application structure, and returns both objects

	
dlg.apps.dynlib.prepare_c_inputs(c_app, inputs)

	Converts all inputs to its C equivalents and sets them into c_app

	
dlg.apps.dynlib.prepare_c_outputs(c_app, outputs)

	Converts all outputs to its C equivalents and sets them into c_app

	
dlg.apps.dynlib.run(lib, c_app, input_closers)

	Invokes the run method on lib with the given c_app. After completion,
all opened file descriptors are closed.

dlg.apps.dockerapp

Module containing docker-related applications and functions

	
class dlg.apps.dockerapp.ContainerIpWaiter(drop)

	A class that remembers the target DROP’s uid and containerIp properties
when its internal event has been set, and returns them when waitForIp is
called, which previously waits for the event to be set.

	
class dlg.apps.dockerapp.DockerApp(**kwargs)

	A BarrierAppDROP that represents a process running in a container
hosted by a local docker daemon. Depending on the host system, the docker
daemon might be automatically activated when a client tries to connect to
it via its unix socket (like with systemd) or it needs to be brought up
prior to any client operation (upstart). In any case, if the daemon is
not present, this class will raise exceptions whenever it tries to connect
to the server to perform some operation.

Docker containers are built from docker images, which are pulled to the host
where the docker daemon runs either explicitly (via docker pull) or less
visibly (e.g., when running docker run using an image that has not been
fetched yet). This DockerApp application will explicitly pull the image at
initialize time, meaning that the docker images will become available at
the time the physical graph (which this application is part of) is deployed.
Docker containers also need a command to be run in them, which should be
an available program inside the image.

Input and output

The inputs and outputs used by the dockerized application are made available
by mapping host directories and files as “data volumes”. Inputs are bound
using their full path, but outputs are bound only up to their dirnames,
because otherwise they would be created at container creation time by
Docker. For example, the output /a/b/c will produce a binding to /dlg/a/b
inside the docker container, where c will have to be written by the process
running in the container.

Since the command to be run in the container receives most probably as
arguments the paths of its inputs and outputs, and since these might not be
known precisely until runtime, users should use placeholders for them in the
command-line specification. Placeholders for input locations take the form
of “%iX”, where X starts from 0 and refers to the X-th filesystem-related
input. Likewise, output locations are specified as “%oX”. Alternatively,
inputs and outputs can be referred to by their UIDs, in which case the
placeholders will look like “%i[X]” and “%o[X]” respectively, where X is the
UID of the input/output being referenced.

Data volumes are a file-specific feature. For this reason, volumes are setup
for file-system based input/output DROPs only, namely the FileDROP and the
DirectoryContainer types. Other DROP types can instead pass down their
dataURL property via the command-line by using placeholders. Placeholders
for input DROP dataURLs take the form of “%iDataURLX”, where X starts from 0
and refers to the X-th non-filesystem related input. Likewise, output
dataURLs are specified as “%oDataURLX”. Alternatively users can refer to the
dataURL of a specific input or output as “%iDataURL[X]” and “%oDataURL[X]”
respectively, where X is the UID of the input/output being referenced.

Additional volume bindings can be specified via the keyword arguments when
creating the DockerApp. The host file/directories must exist at the moment
of creating the DockerApp; otherwise it will fail to initialize.

Users

A docker container usually runs as root by default. One of the major
drawbacks of this is that the output generated by the containerized
application will belong also to the root user of the host system, and not to
the user running the DALiuGE framework. This DockerApp avoids to run containers
as the root user because of this reason. Two parameters, given at
construction time, control this behavior:

	
	user

	If given indicates the user used to run the container. It is
assumed that if a user is indicated, the user already exists in
the docker image; otherwise the container will actually fail to
start. Its default value is None, meaning that the container
will run as the root user.

	
	ensureUserAndSwitch

	If the container is run as the root user, this
option indicates whether a non-root user with the same UID of the
user running this process should be: a) searched for, b) created
if it doesn’t exist, and c) used to run the command inside the
container. This is achieved by prepending some shell commands to
the initial user-specified command, which will run as root first,
but that finally perform the switch within the container process.
Its default value is True if user is None; False
otherwise.

Using these two options one can thus control the user that will run the
command inside the container.

Communication between containers

Although some containerized applications might run on their own, there are
cases where applications need to talk to each other in order to advance
(like in the case of client-server applications, or in the case of MPI
applications). All containers started in the same host (and therefore, all
applications running in them) belong by default to the same network, and
therefore are already visible.

Applications needing to communicate with other applications should be able
to specify the target’s IP in their command-line. Since the IP is not known
until containers are created, this specification is done using the
%containerIp[oid]% placeholder, with ‘oid’ being the OID of the target
DockerApp.

This need to know other DockerApp’s IP imposes a sequential order on the
startup of the containers, since one needs to be started in order to learn
its IP, which is used to start the second. This is handled gracefully by
the DockerApp code, with the condition that self.handleInterest is invoked
where necessary. See self.handleInterest for more information about this
mechanism.

TODO

Processes in containers might not always exit by themselves, and the
containers might need to be manually stopped. This the case for example of
an set of MPI processes, where the master container will run the MPI
program and the slave containers will run an SSH daemon, where the SSH
daemon will not quit automatically once the master process has ended.

Still, we probably will need to differentiate between a forced quit because
of a timeout, and a good quit, and therefore we might impose that processes
running in a container must quit themselves after successfully performing
their task.

	
handleInterest(drop)

	Main mechanism through which a DROP handles its interest in a
second DROP it isn’t directly related to.

A call to this method should be expected for each DROP this
DROP is interested in. The default implementation does nothing,
but implementations are free to perform any action, such as subscribing
to events or storing information.

At this layer only the handling of such an interest exists. The
expression of such interest, and the invocation of this method wherever
necessary, is currently left as a responsibility of the entity creating
the DROPs. In the case of a Session in a DROPManager for
example this step would be performed using deployment-time information
contained in the dropspec dictionaries held in the session.

	
initialize(**kwargs)

	Performs any specific subclass initialization.

kwargs contains all the keyword arguments given at construction time,
except those used by the constructor itself. Implementations of this
method should make sure that arguments in the kwargs dictionary are
removed once they are interpreted so they are not interpreted by
accident by another method implementations that might reside in the call
hierarchy (in the case that a subclass implementation calls the parent
method implementation, which is usually the case).

	
run()

	Run this application. It can be safely assumed that at this point all
the required inputs are COMPLETED.

	
class dlg.apps.dockerapp.DockerPath(path)

	
	
path

	Alias for field number 0

dlg.apps.socket_listener

Module containing the SocketListenerApp, a simple application that listens for
incoming data in a TCP socket.

	
class dlg.apps.socket_listener.SocketListenerApp(**kwargs)

	A BarrierAppDROP that listens on a socket for data. The server-side
socket expects only one client, and assumes that the client will close the
connection after all its data has been sent.

This application expects no input DROPs, and therefore raises an
exception whenever one is added. On the output side, one or more outputs
can be specified with the restriction that they are not ContainerDROPs
so data can be written into them through the framework.

	
initialize(**kwargs)

	Performs any specific subclass initialization.

kwargs contains all the keyword arguments given at construction time,
except those used by the constructor itself. Implementations of this
method should make sure that arguments in the kwargs dictionary are
removed once they are interpreted so they are not interpreted by
accident by another method implementations that might reside in the call
hierarchy (in the case that a subclass implementation calls the parent
method implementation, which is usually the case).

	
run()

	Run this application. It can be safely assumed that at this point all
the required inputs are COMPLETED.

dlg.apps.spead_receiver

Module containing an (python) application that receives spead2 data

	
class dlg.apps.spead_receiver.SpeadReceiverApp(**kwargs)

	A BarrierAppDROP that listens for data using the SPEAD protocol.

This application opens a stream and adds a UDP reader on a specific host and
port to listen for the data of item itemId. The stream is listened until
it is closed. Each heap sent through the stream is checked for the item, and
once found its data is written into each output of this application.

Just like the SocketListenerApp, this application expects no input
DROPs, and therefore raises an exception whenever one is added. On the
output side, one or more outputs can be specified with the restriction that
they are not ContainerDROPs so data can be written into them through
the framework.

	
initialize(**kwargs)

	Performs any specific subclass initialization.

kwargs contains all the keyword arguments given at construction time,
except those used by the constructor itself. Implementations of this
method should make sure that arguments in the kwargs dictionary are
removed once they are interpreted so they are not interpreted by
accident by another method implementations that might reside in the call
hierarchy (in the case that a subclass implementation calls the parent
method implementation, which is usually the case).

	
run()

	Run this application. It can be safely assumed that at this point all
the required inputs are COMPLETED.

dlg.apps.scp

dlg.apps.archiving

	
class dlg.apps.archiving.ExternalStoreApp(**kwargs)

	An application that takes its input DROP (which must be one, and only
one) and creates a copy of it in a completely external store, from the point
of view of the DALiuGE framework.

Because this application copies the data to an external location, it also
shouldn’t contain any output, making it a leaf node of the physical graph
where it resides.

	
run()

	Run this application. It can be safely assumed that at this point all
the required inputs are COMPLETED.

	
store(inputDrop)

	Method implemented by subclasses. It should stores the contents of
inputDrop into an external store.

	
class dlg.apps.archiving.NgasArchivingApp(**kwargs)

	An ExternalStoreApp class that takes its input DROP and archives it in
an NGAS server. It currently deals with non-container DROPs only.

The archiving to NGAS occurs through the framework and not by spawning a
new NGAS client process. This way we can read the different storage types
supported by the framework, and not only filesystem objects.

	
initialize(**kwargs)

	Performs any specific subclass initialization.

kwargs contains all the keyword arguments given at construction time,
except those used by the constructor itself. Implementations of this
method should make sure that arguments in the kwargs dictionary are
removed once they are interpreted so they are not interpreted by
accident by another method implementations that might reside in the call
hierarchy (in the case that a subclass implementation calls the parent
method implementation, which is usually the case).

	
store(inDrop)

	Method implemented by subclasses. It should stores the contents of
inputDrop into an external store.

dlg.apps.crc

Module containing an example application that calculates a CRC value

	
class dlg.apps.crc.CRCApp(**kwargs)

	An BarrierAppDROP that calculates the CRC of the single DROP it
consumes. It assumes the DROP being consumed is not a container.
This is a simple example of an BarrierAppDROP being implemented, and
not something really intended to be used in a production system

	
run()

	Run this application. It can be safely assumed that at this point all
the required inputs are COMPLETED.

	
class dlg.apps.crc.CRCStreamApp(**kwargs)

	Calculate CRC in the streaming mode
i.e. A “streamingConsumer” of its predecessor in the graph

	
dataWritten(uid, data)

	Callback invoked when data has been written into the DROP with
UID uid (which is one of the streaming inputs of this AppDROP).
By default no action is performed

	
dropCompleted(uid, status)

	Callback invoked when the DROP with UID uid (which is either a
normal or a streaming input of this AppDROP) has moved to the
COMPLETED or ERROR state. By default no action is performed.

	
initialize(**kwargs)

	Performs any specific subclass initialization.

kwargs contains all the keyword arguments given at construction time,
except those used by the constructor itself. Implementations of this
method should make sure that arguments in the kwargs dictionary are
removed once they are interpreted so they are not interpreted by
accident by another method implementations that might reside in the call
hierarchy (in the case that a subclass implementation calls the parent
method implementation, which is usually the case).

dlg.dropmake

Prototypical implementation of DataFlow Manager
https://confluence.ska-sdp.org/display/PRODUCTTREE/C.1.2.4.4+Data+Flow+Manager
The sub-modules are based on the proposed (latest) product tree as of 8 Dec 2015

Contents

	dlg.dropmake

	dlg.dropmake.web.lg_web

	dlg.dropmake.pg_generator

	dlg.dropmake.scheduler

	dlg.dropmake.pg_manager

dlg.dropmake.web.lg_web

dlg.dropmake.pg_generator

https://confluence.ska-sdp.org/display/PRODUCTTREE/C.1.2.4.4.2+DFM+Resource+Manager

DFM resource managr uses the requested logical graphs, the available resources and
the profiling information and turns it into the partitioned physical graph,
which will then be deployed and monitored by the Physical Graph Manager

Examples of logical graph node JSON representation

	{ u’category’: u’memory’,

	u’data_volume’: 25,
u’group’: -58,
u’key’: -59,
u’loc’: u‘40.96484375000006 -250.53115793863992’,
u’text’: u’Channel @

All Day’},

	{ u’Arg01’: u’‘,

	u’Arg02’: u’‘,
u’Arg03’: u’‘,
u’Arg04’: u’‘,
u’category’: u’Component’,
u’execution_time’: 20,
u’group’: -60,
u’key’: -56,
u’loc’: u‘571.6718750000005 268.0000000000004’,
u’text’: u’DD Calibration’}

	
exception dlg.dropmake.pg_generator.GInvalidLink

	

	
exception dlg.dropmake.pg_generator.GInvalidNode

	

	
exception dlg.dropmake.pg_generator.GPGTException

	

	
exception dlg.dropmake.pg_generator.GPGTNoNeedMergeException

	

	
exception dlg.dropmake.pg_generator.GraphException

	

	
class dlg.dropmake.pg_generator.LG(f, ssid=None)

	An object representation of Logical Graph

	
lgn_to_pgn(lgn, iid='0', lpcxt=None)

	convert logical graph node to physical graph node
without considering pg links

iid: instance id (string)
lpcxt: Loop context

	
unroll_to_tpl()

	Not thread-safe!

	just create pgn anyway

	sort out the links

	
class dlg.dropmake.pg_generator.MetisPGTP(drop_list, num_partitions=1, min_goal=0, par_label='Partition', ptype=0, ufactor=10, merge_parts=False)

	DROP and GOJS representations of Physical Graph Template with Partitions
Based on METIS
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

	
get_partition_info()

	partition parameter and log entry
return a string

	
merge_partitions(new_num_parts, form_island=False, island_type=0, visual=False)

	This is called during resource mapping - deploying partitioned PGT to
a list of nodes

	form_island: If True, the merging will form new_num_parts logical

	islands on top of existing partitions (i.e. nodes). this
is also known as “reference-based merging”

If False, the merging will physically merge current
partitions into new_num_parts new partitions (i.e. nodes)
Thus, there will be no node-island ‘hierarchies’ created

island_type: integer, 0 - data island, 1 - compute island

	
to_gojs_json(string_rep=True, outdict=None, visual=False)

	Partition the PGT into a real “PGT with Partitions”, thus PGTP, using
METIS built-in functions

	See METIS usage:

	http://metis.readthedocs.io/en/latest/index.html

	
to_partition_input(outf=None)

	Convert to METIS format for mapping and decomposition
NOTE - Since METIS only supports Undirected Graph, we have to produce
both upstream and downstream nodes to fit its input format

	
class dlg.dropmake.pg_generator.MinNumPartsPGTP(drop_list, deadline, num_partitions=0, par_label='Partition', max_dop=8, merge_parts=False, optimistic_factor=0.5)

	
	
get_partition_info()

	partition parameter and log entry
return a string

	
class dlg.dropmake.pg_generator.MySarkarPGTP(drop_list, num_partitions=0, par_label='Partition', max_dop=8, merge_parts=False)

	use the MySarkarScheduler to produce the PGTP

	
get_partition_info()

	partition parameter and log entry
return a string

	
merge_partitions(new_num_parts, form_island=False, island_type=0, visual=False)

	This is called during resource mapping - deploying partitioned PGT to
a list of nodes

	form_island: If True, the merging will form new_num_parts logical

	islands on top of existing partitions (i.e. nodes)

If False, the merging will physically merge current
partitions into new_num_parts new partitions (i.e. nodes)
Thus, there will be no node-island ‘hierarchies’ created

island_type: integer, 0 - data island, 1 - compute island

	
to_gojs_json(string_rep=True, outdict=None, visual=False)

	Partition the PGT into a real “PGT with Partitions”, thus PGTP

	
to_partition_input(outf)

	Convert to format for mapping and decomposition

	
class dlg.dropmake.pg_generator.PGT(drop_list, build_dag=True)

	A DROP representation of Physical Graph Template

	
dag

	
Return the networkx nx.DiGraph object

The weight of the same edge (u, v) also depends.
If it is called after the partitioning, it could have been zeroed
if both u and v is allocated to the same DropIsland

	
data_movement

	Return the TOTAL data movement

	
get_opt_num_parts()

	dummy for now

	
json

	Return the JSON string representation of the PGT
for visualisation

	
pred_exec_time(app_drop_only=False, wk='weight', force_answer=False)

	Predict execution time using the longest path length

	
to_gojs_json(string_rep=True, outdict=None, visual=False)

	Convert PGT (without any partitions) to JSON for visualisation in GOJS

Sub-class PGTPs will override this function, and replace this with
actual partitioning, and the visulisation becomes an option

	
to_partition_input(outf)

	Convert to format for mapping and decomposition

	
to_pg_spec(node_list, ret_str=True, num_islands=1, tpl_nodes_len=0)

	convert pgt to pg specification, and map that to the hardware resources

	node_list:

	A list of nodes (list), whose length == (num_islands + num_node_mgrs)
We assume that the MasterDropManager’s node is NOT in the node_list

	num_islands:

	>1 - Partitions are “conceptually” clustered into Islands
1 - Partitions MAY BE physically merged without generating islands

depending on the length of node_list

	
class dlg.dropmake.pg_generator.PSOPGTP(drop_list, par_label='Partition', max_dop=8, deadline=None, topk=30, swarm_size=40, merge_parts=False)

	
	
get_partition_info()

	partition parameter and log entry
return a string

	
dlg.dropmake.pg_generator.partition(pgt, algo, num_partitions=1, num_islands=1, partition_label='partition', show_gojs=False, **algo_params)

	Partitions a Physical Graph Template

	
dlg.dropmake.pg_generator.unroll(lg, oid_prefix=None)

	Unrolls a logical graph

dlg.dropmake.scheduler

	
class dlg.dropmake.scheduler.DAGUtil

	Helper functions dealing with DAG

	
static build_dag_from_drops(drop_list, embed_drop=True, fake_super_root=False)

	return a networkx Digraph (DAG)
fake_super_root: whether to create a fake super root node in the DAG

If set to True, it enables edge zero-based
scheduling agorithms to make more aggressive merging

tw - task weight
dw - data weight / volume

	
static ganttchart_matrix(G, topo_sort=None)

	Return a M (# of DROPs) by N (longest path length) matrix

	
static get_longest_path(G, weight='weight', default_weight=1, show_path=True, topo_sort=None)

	Ported from:
https://github.com/networkx/networkx/blob/master/networkx/algorithms/dag.py
Added node weight

Returns the longest path in a DAG
If G has edges with ‘weight’ attribute the edge data are used as weight values.
Parameters
———-
G : NetworkX DiGraph

Graph

	weightstring (default ‘weight’)

	Edge data key to use for weight

	default_weightinteger (default 1)

	The weight of edges that do not have a weight attribute

	pathlist

	Longest path

	path_lengthfloat

	The length of the longest path

	
static get_max_antichains(G)

	return a list of antichains with Top-2 lengths

	
static get_max_dop(G)

	Get the maximum degree of parallelism of this DAG
return : int

	
static get_max_width(G, weight='weight', default_weight=1)

	Get the antichain with the maximum “weighted” width of this DAG
weight: float (for example, it could be RAM consumption in GB)
Return : float

	
static label_schedule(G, weight='weight', topo_sort=None)

	for each node, label its start and end time

	
static metis_part(G, num_partitions)

	Use metis binary executable (instead of library)
This is used only for testing when libmetis halts unexpectedly

	
static prune_antichains(antichains)

	Prune a list of antichains to keep those with Top-2 lengths
antichains is a Generator (not a list!)

	
class dlg.dropmake.scheduler.DSCScheduler(drop_list)

	Based on
T. Yang and A. Gerasoulis, “DSC: scheduling parallel tasks on an
unbounded number of processors,” in IEEE Transactions on
Parallel and Distributed Systems, vol.5, no.9, pp.951-967, Sep 1994

	
class dlg.dropmake.scheduler.DilworthPartition(gid, max_dop)

	Use Dilworth theorem to determine DoP
see https://en.wikipedia.org/wiki/Dilworth’s_theorem [https://en.wikipedia.org/wiki/Dilworth's_theorem]

The idea goes as follows:
Let bpg = bipartite_graph(dag)

DoP == Poset Width == len(max_antichain) ==
len(min_num_chain) == (cardinality(dag) - len(max_matching(bpg)))

Note that cardinality(dag) == cardinality(bpg) / 2

See Section 3 of the paper
http://opensource.uom.gr/teaching/distrubutedSite/eceutexas/dist2/
termPapers/Selma.pdf

Also http://codeforces.com/blog/entry/3781

The key is to incrementally construct the bipartite graph (bpg)
from growing dag

	
add(u, v, gu, gv, sequential=False, global_dag=None)

	Add nodes u and/or v to the partition
if sequential is True, break antichains to sequential chains

	
can_add(u, v, gu, gv)

	Check if nodes u and/or v can join this partition
A node may be rejected due to reasons such as: DoP overflow or
completion time deadline overdue, etc.

	
can_merge(that)

	
	if (self._max_dop + that._max_dop <= self._ask_max_dop):

	return True

	
class dlg.dropmake.scheduler.GraphAnnealer(state, scheduler, deadline=None, topk=None)

	Use simulated annealing for a DAG/Graph scheduling problem.
There are two ways to inject constraints:

	explicitly implement the meet_constraint function

	add an extra penalty term in the energy function

	
energy()

	Calculates the number of partitions

	
meet_constraint()

	Check if the contraint is met
By default, it is always met

	
move()

	Select the neighbour, in this case
Swaps two edges in the DAG if they are not the same
and simply reduce by one for one of them if otherwise

	
class dlg.dropmake.scheduler.KFamilyPartition(gid, max_dop, w_attr='num_cpus', global_dag=None)

	A special case (K = 1) of the Maximum Weighted K-families based on
the Theorem 3.1 in
http://fmdb.cs.ucla.edu/Treports/930014.pdf

	
add_node(u, weight)

	Add a single node u to the partition

	
can_merge(that, u, v)

	

	
class dlg.dropmake.scheduler.MCTSScheduler(drop_list, max_dop=8, dag=None, deadline=None, max_moves=1000, max_calc_time=10)

	Use Monte Carlo Tree Search to guide the Sarkar algorithm
https://en.wikipedia.org/wiki/Monte_Carlo_tree_search
Use basic functions in PSOScheduler by inheriting it for convinence

	
partition_dag()

	Trigger the MCTS algorithm
Returns a tuple of:

	the # of partitions formed (int)

	the parallel time (longest path, int)

	partition time (seconds, float)

	a list of partitions (Partition)

	
class dlg.dropmake.scheduler.MinNumPartsScheduler(drop_list, deadline, max_dop=8, dag=None, optimistic_factor=0.5)

	A special type of partition that aims to schedule the DAG on time but at minimum cost.
In this particular case, the cost is the number of partitions that will be generated.
The assumption is # of partitions (with certain DoP) more or less represents resource footprint.

	
is_time_critical(u, uw, unew, v, vw, vnew, curr_lpl, ow, rem_el)

	This is called ONLY IF either can_add on partition has returned “False”
or the new critical path is longer than the old one at each iteration

	Parameters:

	u - node u, v - node v, uw - weight of node u, vw - weight of node v
curr_lpl - current longest path length, ow - current edge weight
rem_el - remainig edges to be zeroed
ow - original edge length

	Returns:

	Boolean

It looks ahead to compute the probability of time being critical
and compares that with the _optimistic_factor
probility = (num of edges need to be zeroed to meet the deadline) /
(num of remaining unzeroed edges)

	
override_cannot_add()

	Whether this scheduler will override the False result from Partition.can_add()

	
class dlg.dropmake.scheduler.MultiWeightPartition(gid, max_dops, w_attrs=['num_cpus'], global_dag=None)

	
	
add(u, v, gu, gv, sequential=False, global_dag=None)

	Add nodes u and/or v to the partition
if sequential is True, break antichains to sequential chains

	
can_add(u, v, gu, gv)

	Check if nodes u and/or v can join this partition
A node may be rejected due to reasons such as: DoP overflow or
completion time deadline overdue, etc.

	
can_merge(that)

	

	
class dlg.dropmake.scheduler.MySarkarScheduler(drop_list, max_dop=8, dag=None, dump_progress=False)

	Based on “V. Sarkar, Partitioning and Scheduling Parallel Programs for Execution on
Multiprocessors. Cambridge, MA: MIT Press, 1989.”

Main change
We do not order independent tasks within the same cluster. This could blow the cluster, therefore
we allow for a cost constraint on the number of concurrent tasks (e.g. # of cores) within each cluster

Why
1. we only need to topologically sort the DAG once since we do not add new edges in the cluster
2. closer to requirements
3. adjustable for local schedulers

Similar ideas:
http://stackoverflow.com/questions/3974731

	
is_time_critical(u, uw, unew, v, vw, vnew, curr_lpl, ow, rem_el)

	This is called ONLY IF override_cannot_add has returned “True”
Parameters:

u - node u, v - node v, uw - weight of node u, vw - weight of node v
curr_lpl - current longest path length, ow - current edge weight
rem_el - remainig edges to be zeroed
ow - original edge length

	Returns:

	Boolean

MySarkarScheduler always returns False

	
override_cannot_add()

	Whether this scheduler will override the False result from Partition.can_add()

	
partition_dag()

	
	Return a tuple of

	
	the # of partitions formed (int)

	the parallel time (longest path, int)

	partition time (seconds, float)

	
class dlg.dropmake.scheduler.PSOScheduler(drop_list, max_dop=8, dag=None, deadline=None, topk=30, swarm_size=40)

	Use the Particle Swarm Optimisation to guide the Sarkar algorithm
https://en.wikipedia.org/wiki/Particle_swarm_optimization

The idea is to let “edgezeroing” becomes the search variable X
The number of dimensions of X is the number of edges in DAG
Possible values for each dimension is a discrete set {1, 2, 3}
where

10 - no zero (2 in base10) + 1
00 - zero w/o linearisation (0 in base10) + 1
01 - zero with linearisation (1 in base10) + 1

	if (deadline is present):

	
	the objective function sets up a partition scheme such that

	
	DoP constrints for each partiiton are satisfied
based on X[i] value, reject or linearisation

	returns num_of_partitions

	constrain function:

	
	makespan < deadline

	else:

	
	the objective function sets up a partition scheme such that

	
	DoP constrints for each partiiton are satisfied
based on X[i] value, reject or linearisation

	returns makespan

	
constrain_func(x)

	Deadline - critical_path >= 0

	
objective_func(x)

	x is a list of values, each taking one of the 3 integers: 0,1,2 for an edge
indices of x is identical to the indices in G.edges().sort(key=’weight’)

	
partition_dag()

	
	Returns a tuple of:

	
	the # of partitions formed (int)

	the parallel time (longest path, int)

	partition time (seconds, float)

	a list of partitions (Partition)

	
class dlg.dropmake.scheduler.Partition(gid, max_dop)

	Logical partition, multiple (1 ~ N) of these can be placed onto a single
physical resource unit

Logical partition can be nested, and it somewhat resembles the dlg.manager.drop_manager

	
add(u, v, gu, gv, sequential=False, global_dag=None)

	Add nodes u and/or v to the partition
if sequential is True, break antichains to sequential chains

	
add_node(u, weight)

	Add a single node u to the partition

	
can_add(u, v, gu, gv)

	Check if nodes u and/or v can join this partition
A node may be rejected due to reasons such as: DoP overflow or
completion time deadline overdue, etc.

	
probe_max_dop(u, v, unew, vnew, update=False)

	An incremental antichain (which appears significantly more efficient than the networkx antichains)
But only works for DoP, not for weighted width

	
remove(n)

	Remove node n from the partition

	
schedule

	Get the schedule assocaited with this partition

	
class dlg.dropmake.scheduler.SAScheduler(drop_list, max_dop=8, dag=None, deadline=None, topk=None, max_iter=6000)

	Use Simulated Annealing to guide the Sarkar algorithm
https://en.wikipedia.org/wiki/Simulated_annealing
http://apmonitor.com/me575/index.php/Main/SimulatedAnnealing
Use basic functions in PSOScheduler by inheriting it for convinence

	
partition_dag()

	Trigger the SA algorithm
Returns a tuple of:

	the # of partitions formed (int)

	the parallel time (longest path, int)

	partition time (seconds, float)

	a list of partitions (Partition)

	
class dlg.dropmake.scheduler.Schedule(dag, max_dop)

	The scheduling solution with schedule-related properties

	
efficiency

	resource usage percentage (integer)

	
schedule_matrix

	
	Return: a self._lpl x self._max_dop matrix

	(X - time, Y - resource unit / parallel lane)

	
workload

	
	Return: (integer)

	the mean # of resource units per time unit consumed by the graph/partition

	
class dlg.dropmake.scheduler.Scheduler(drop_list, max_dop=8, dag=None)

	Static Scheduling consists of three steps:
1. partition the DAG into an optimal number (M) of partitions

goal - minimising execution time while maintaining intra-partition DoP

	
	merge partitions into a given number (N) of partitions (if M > N)

	goal - minimise logical communication cost while maintaining load balancing

	
	map each merged partition to a resource unit

	goal - minimise physical communication cost amongst resource units

	
map_partitions()

	map logical partitions to physical resources

	
merge_partitions(num_partitions, bal_cond=0)

	
	Merge M partitions into N partitions where N < M

	implemented using METIS for now

	bal_cond: load balance condition (integer):

	0 - workload, 1 - count

	
exception dlg.dropmake.scheduler.SchedulerException

	

	
class dlg.dropmake.scheduler.WeightedDilworthPartition(gid, max_dop, global_dag=None)

	The extensions on DilworthPartition

	Support “weights” for each Drop’s DoP

	(e.g. CLEAN AppDrop uses 8 cores)

This requires a “weighted” maximal antichain. The solution is to
create a weighted version of the bipartite graph without changing
the original partition DAG. This allows us to use the same max matching
algorithm to find the max antichain

It has an option (global_dag) to deal with global path reachability,
which could be missing from the DAG inside the local partition.
Such misses inflate DoP values, leading to more rejected partition merge
requests, which in turn creates more partitions. Based on our experiment,
without switching on this option, scheduling the “chiles_two_dev2” pipeline
will create 45 partitions (i.e. 45 compute nodes, each has 8 cores).
Turning on this option bring that number down to 24 within the same
execution time.

Off - exec_time:92 - min_exec_time:67 - total_data_movement:510 -
algo:Edge Zero - num_parts:45

On - exec_time:92 - min_exec_time:67 - total_data_movement:482 -
algo:Edge Zero - num_parts:24

However “probing reachability” slows down partitioning by a factor of 3
in the case of the CHILES2 pipeline. Some techniques may be applicable e.g.
http://www.sciencedirect.com/science/article/pii/S0196677483710175

	
can_add(u, v, gu, gv)

	Check if nodes u and/or v can join this partition
A node may be rejected due to reasons such as: DoP overflow or
completion time deadline overdue, etc.

	
can_merge(that)

	Need to merge split graph as well to speed up!

dlg.dropmake.pg_manager

Refer to
https://confluence.ska-sdp.org/display/PRODUCTTREE/C.1.2.4.4.4+DFM+Physical+Graph+Manager

	
class dlg.dropmake.pg_manager.PGManager(root_dir)

	Physical Graph Manager

	
add_pgt(pgt, lg_name)

	Dummy impl. using file system for now (thread safe)
TODO - use proper graph databases to manage all PGTs

	Return:

	A unique PGT id (handle)

	
get_gantt_chart(pgt_id, json_str=True)

	
	Return:

	the gantt chart matrix (numarray) given a PGT id

	
get_pgt(pgt_id)

	
	Return:

	The PGT object given its PGT id

	
get_schedule_matrices(pgt_id, json_str=True)

	
	Return:

	a list of schedule matrices (numarrays) given a PGT id

	
class dlg.dropmake.pg_manager.PGUtil

	Helper functions dealing with Physical Graphs

	
static vstack_mat(A, B, separator=False)

	Vertically stack two matrices that may have different # of colums
A:

matrix A (2d numpy array)

	B:

	matrix B (2d numy array)

	separator:

	whether to add an empty row separator between the two matrices (boolean)

	Return:

	the vertically stacked matrix (2d numpy array)

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dlg	

 	
 	
 dlg.apps	

 	
 	
 dlg.apps.archiving	

 	
 	
 dlg.apps.bash_shell_app	

 	
 	
 dlg.apps.crc	

 	
 	
 dlg.apps.dockerapp	

 	
 	
 dlg.apps.dynlib	

 	
 	
 dlg.apps.socket_listener	

 	
 	
 dlg.apps.spead_receiver	

 	
 	
 dlg.drop	

 	
 	
 dlg.dropmake	

 	
 	
 dlg.dropmake.pg_generator	

 	
 	
 dlg.dropmake.pg_manager	

 	
 	
 dlg.dropmake.scheduler	

 	
 	
 dlg.dropmake.web.lg_web	

 	
 	
 dlg.droputils	

 	
 	
 dlg.event	

 	
 	
 dlg.graph_loader	

 	
 	
 dlg.io	

 	
 	
 dlg.manager	

 	
 	
 dlg.manager.client	

 	
 	
 dlg.manager.drop_manager	

 	
 	
 dlg.manager.node_manager	

 	
 	
 dlg.manager.rest	

 	
 	
 dlg.manager.session	

 	
 	
 dlg.s3_drop	

 	
 	
 dlg.utils	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

A

 	
 	AbstractDROP (class in dlg.drop)

 	add() (dlg.dropmake.scheduler.DilworthPartition method)

 	(dlg.dropmake.scheduler.MultiWeightPartition method)

 	(dlg.dropmake.scheduler.Partition method)

 	add_node() (dlg.dropmake.scheduler.KFamilyPartition method)

 	(dlg.dropmake.scheduler.Partition method)

 	add_pgt() (dlg.dropmake.pg_manager.PGManager method)

 	addConsumer() (dlg.drop.AbstractDROP method)

 	addGraphSpec() (dlg.manager.client.BaseDROPManagerClient method)

 	(dlg.manager.drop_manager.DROPManager method)

 	(dlg.manager.node_manager.NodeManagerBase method)

 	
 	addLink() (in module dlg.graph_loader)

 	addProducer() (dlg.drop.AbstractDROP method)

 	addStreamingConsumer() (dlg.drop.AbstractDROP method)

 	allDropContents() (in module dlg.droputils)

 	AppDROP (class in dlg.drop)

 	append() (dlg.drop.ListAsDict method)

 	append_graph() (dlg.manager.client.BaseDROPManagerClient method)

B

 	
 	b2s() (in module dlg.utils)

 	BarrierAppDROP (class in dlg.drop)

 	BaseDROPManagerClient (class in dlg.manager.client)

 	BashShellApp (class in dlg.apps.bash_shell_app)

 	
 	BashShellBase (class in dlg.apps.bash_shell_app)

 	breadFirstTraverse() (in module dlg.droputils)

 	browse_service() (in module dlg.utils)

 	bucket (dlg.s3_drop.S3DROP attribute)

 	build_dag_from_drops() (dlg.dropmake.scheduler.DAGUtil static method)

C

 	
 	can_add() (dlg.dropmake.scheduler.DilworthPartition method)

 	(dlg.dropmake.scheduler.MultiWeightPartition method)

 	(dlg.dropmake.scheduler.Partition method)

 	(dlg.dropmake.scheduler.WeightedDilworthPartition method)

 	can_merge() (dlg.dropmake.scheduler.DilworthPartition method)

 	(dlg.dropmake.scheduler.KFamilyPartition method)

 	(dlg.dropmake.scheduler.MultiWeightPartition method)

 	(dlg.dropmake.scheduler.WeightedDilworthPartition method)

 	CDlgApp (class in dlg.apps.dynlib)

 	CDlgInput (class in dlg.apps.dynlib)

 	CDlgOutput (class in dlg.apps.dynlib)

 	CDlgStreamingInput (class in dlg.apps.dynlib)

 	check_port() (in module dlg.utils)

 	checksum (dlg.drop.AbstractDROP attribute)

 	checksumType (dlg.drop.AbstractDROP attribute)

 	close() (dlg.drop.AbstractDROP method)

 	(dlg.io.DataIO method)

 	
 	CompositeManagerClient (class in dlg.manager.client)

 	CompositeManagerRestServer (class in dlg.manager.rest)

 	connect_to() (in module dlg.utils)

 	constrain_func() (dlg.dropmake.scheduler.PSOScheduler method)

 	consumers (dlg.drop.AbstractDROP attribute)

 	ContainerDROP (class in dlg.drop)

 	ContainerIpWaiter (class in dlg.apps.dockerapp)

 	copyDropContents() (in module dlg.droputils)

 	CRCApp (class in dlg.apps.crc)

 	CRCStreamApp (class in dlg.apps.crc)

 	create_session() (dlg.manager.client.BaseDROPManagerClient method)

 	createDirIfMissing() (in module dlg.utils)

 	createSession() (dlg.manager.client.BaseDROPManagerClient method)

 	(dlg.manager.drop_manager.DROPManager method)

 	(dlg.manager.node_manager.NodeManagerBase method)

D

 	
 	dag (dlg.dropmake.pg_generator.PGT attribute)

 	DAGUtil (class in dlg.dropmake.scheduler)

 	data_movement (dlg.dropmake.pg_generator.PGT attribute)

 	DataIO (class in dlg.io)

 	DataIslandManagerClient (class in dlg.manager.client)

 	dataURL() (dlg.drop.AbstractDROP method)

 	(dlg.drop.ContainerDROP method)

 	dataWritten() (dlg.apps.bash_shell_app.StreamingInputBashAppBase method)

 	(dlg.apps.crc.CRCStreamApp method)

 	(dlg.apps.dynlib.DynlibStreamApp method)

 	(dlg.drop.AppDROP method)

 	decrRefCount() (dlg.drop.AbstractDROP method)

 	delayed() (in module dlg)

 	delete() (dlg.drop.AbstractDROP method)

 	(dlg.drop.ContainerDROP method)

 	(dlg.drop.DirectoryContainer method)

 	(dlg.drop.FileDROP method)

 	(dlg.io.DataIO method)

 	(dlg.io.ErrorIO method)

 	(dlg.io.FileIO method)

 	(dlg.io.MemoryIO method)

 	(dlg.io.NgasIO method)

 	(dlg.io.NgasLiteIO method)

 	(dlg.io.NullIO method)

 	(dlg.io.ShoreIO method)

 	deliver_event() (dlg.manager.node_manager.NodeManagerBase method)

 	deploy_session() (dlg.manager.client.BaseDROPManagerClient method)

 	deploySession() (dlg.manager.client.BaseDROPManagerClient method)

 	(dlg.manager.drop_manager.DROPManager method)

 	(dlg.manager.node_manager.NodeManagerBase method)

 	depthFirstTraverse() (in module dlg.droputils)

 	deregister_service() (in module dlg.utils)

 	destroy_session() (dlg.manager.client.BaseDROPManagerClient method)

 	destroySession() (dlg.manager.client.BaseDROPManagerClient method)

 	(dlg.manager.drop_manager.DROPManager method)

 	(dlg.manager.node_manager.NodeManagerBase method)

 	DilworthPartition (class in dlg.dropmake.scheduler)

 	DirectoryContainer (class in dlg.drop)

 	dlg (module)

 	dlg.apps (module)

 	
 	dlg.apps.archiving (module)

 	dlg.apps.bash_shell_app (module)

 	dlg.apps.crc (module)

 	dlg.apps.dockerapp (module)

 	dlg.apps.dynlib (module)

 	dlg.apps.socket_listener (module)

 	dlg.apps.spead_receiver (module)

 	dlg.drop (module)

 	dlg.dropmake (module)

 	dlg.dropmake.pg_generator (module)

 	dlg.dropmake.pg_manager (module)

 	dlg.dropmake.scheduler (module)

 	dlg.dropmake.web.lg_web (module)

 	dlg.droputils (module)

 	dlg.event (module)

 	dlg.graph_loader (module)

 	dlg.io (module)

 	dlg.manager (module)

 	dlg.manager.client (module)

 	dlg.manager.drop_manager (module)

 	dlg.manager.node_manager (module)

 	dlg.manager.rest (module)

 	dlg.manager.session (module)

 	dlg.s3_drop (module)

 	dlg.utils (module)

 	DockerApp (class in dlg.apps.dockerapp)

 	DockerPath (class in dlg.apps.dockerapp)

 	dropCompleted() (dlg.apps.bash_shell_app.StreamingInputBashAppBase method)

 	(dlg.apps.crc.CRCStreamApp method)

 	(dlg.apps.dynlib.DynlibStreamApp method)

 	(dlg.drop.AppDROP method)

 	(dlg.drop.InputFiredAppDROP method)

 	dropdict (class in dlg.drop)

 	DROPFile (class in dlg.droputils)

 	DROPManager (class in dlg.manager.drop_manager)

 	DROPWaiterCtx (class in dlg.droputils)

 	DSCScheduler (class in dlg.dropmake.scheduler)

 	DynlibApp (class in dlg.apps.dynlib)

 	DynlibProcApp (class in dlg.apps.dynlib)

 	DynlibStreamApp (class in dlg.apps.dynlib)

E

 	
 	efficiency (dlg.dropmake.scheduler.Schedule attribute)

 	energy() (dlg.dropmake.scheduler.GraphAnnealer method)

 	ErrorIO (class in dlg.io)

 	ErrorStatusListener (class in dlg.manager.node_manager)

 	escapeQuotes() (in module dlg.utils)

 	Event (class in dlg.event)

 	EventFirer (class in dlg.event)

 	EvtConsumer (class in dlg.droputils)

 	execStatus (dlg.drop.AppDROP attribute)

 	execute() (dlg.drop.InputFiredAppDROP method)

 	executionMode (dlg.drop.AbstractDROP attribute)

 	exists() (dlg.drop.AbstractDROP method)

 	(dlg.drop.ContainerDROP method)

 	(dlg.drop.DirectoryContainer method)

 	(dlg.drop.InputFiredAppDROP method)

 	(dlg.io.DataIO method)

 	(dlg.io.ErrorIO method)

 	(dlg.io.FileIO method)

 	(dlg.io.MemoryIO method)

 	(dlg.io.NgasIO method)

 	(dlg.io.NgasLiteIO method)

 	(dlg.io.NullIO method)

 	(dlg.io.ShoreIO method)

 	(dlg.s3_drop.S3DROP method)

 	
 	ExternalStoreApp (class in dlg.apps.archiving)

F

 	
 	FileDROP (class in dlg.drop)

 	FileIO (class in dlg.io)

 	
 	finish_subprocess

 	fname_to_pipname() (in module dlg.utils)

G

 	
 	ganttchart_matrix() (dlg.dropmake.scheduler.DAGUtil static method)

 	get_all_ipv4_addresses() (in module dlg.utils)

 	get_from_subprocess() (in module dlg.apps.dynlib)

 	get_gantt_chart() (dlg.dropmake.pg_manager.PGManager method)

 	get_leaves() (in module dlg.droputils)

 	get_local_ip_addr() (in module dlg.utils)

 	get_longest_path() (dlg.dropmake.scheduler.DAGUtil static method)

 	get_max_antichains() (dlg.dropmake.scheduler.DAGUtil static method)

 	get_max_dop() (dlg.dropmake.scheduler.DAGUtil static method)

 	get_max_width() (dlg.dropmake.scheduler.DAGUtil static method)

 	get_opt_num_parts() (dlg.dropmake.pg_generator.PGT method)

 	get_partition_info() (dlg.dropmake.pg_generator.MetisPGTP method)

 	(dlg.dropmake.pg_generator.MinNumPartsPGTP method)

 	(dlg.dropmake.pg_generator.MySarkarPGTP method)

 	(dlg.dropmake.pg_generator.PSOPGTP method)

 	get_pgt() (dlg.dropmake.pg_manager.PGManager method)

 	get_roots() (in module dlg.droputils)

 	get_rpc_client() (dlg.manager.node_manager.NodeManagerBase method)

 	get_schedule_matrices() (dlg.dropmake.pg_manager.PGManager method)

 	getDlgDir() (in module dlg.utils)

 	getDlgLogsDir() (in module dlg.utils)

 	getDlgPidDir() (in module dlg.utils)

 	getDownstreamObjects() (in module dlg.droputils)

 	getGraph() (dlg.manager.client.BaseDROPManagerClient method)

 	(dlg.manager.drop_manager.DROPManager method)

 	(dlg.manager.node_manager.NodeManagerBase method)

 	getGraphSize() (dlg.manager.client.BaseDROPManagerClient method)

 	(dlg.manager.drop_manager.DROPManager method)

 	(dlg.manager.node_manager.NodeManagerBase method)

 	
 	getGraphStatus() (dlg.manager.client.BaseDROPManagerClient method)

 	(dlg.manager.drop_manager.DROPManager method)

 	(dlg.manager.node_manager.NodeManagerBase method)

 	getIO() (dlg.drop.AbstractDROP method)

 	(dlg.drop.ContainerDROP method)

 	(dlg.drop.FileDROP method)

 	(dlg.drop.InMemoryDROP method)

 	(dlg.drop.NgasDROP method)

 	(dlg.drop.NullDROP method)

 	(dlg.drop.RDBMSDrop method)

 	(dlg.drop.ShoreDROP method)

 	(dlg.s3_drop.S3DROP method)

 	getLeafNodes() (in module dlg.droputils)

 	getSessionIds() (dlg.manager.drop_manager.DROPManager method)

 	(dlg.manager.node_manager.NodeManagerBase method)

 	getSessionStatus() (dlg.manager.client.BaseDROPManagerClient method)

 	(dlg.manager.drop_manager.DROPManager method)

 	(dlg.manager.node_manager.NodeManagerBase method)

 	getUpstreamObjects() (in module dlg.droputils)

 	GInvalidLink

 	GInvalidNode

 	GPGTException

 	GPGTNoNeedMergeException

 	graph() (dlg.manager.client.BaseDROPManagerClient method)

 	graph_size() (dlg.manager.client.BaseDROPManagerClient method)

 	graph_status() (dlg.manager.client.BaseDROPManagerClient method)

 	GraphAnnealer (class in dlg.dropmake.scheduler)

 	GraphException

H

 	
 	handleEvent() (dlg.drop.AbstractDROP method)

 	(dlg.drop.AppDROP method)

 	
 	handleInterest() (dlg.apps.dockerapp.DockerApp method)

 	(dlg.drop.AbstractDROP method)

 	has_path() (in module dlg.droputils)

I

 	
 	incrRefCount() (dlg.drop.AbstractDROP method)

 	initialize() (dlg.apps.archiving.NgasArchivingApp method)

 	(dlg.apps.bash_shell_app.StreamingInputBashAppBase method)

 	(dlg.apps.crc.CRCStreamApp method)

 	(dlg.apps.dockerapp.DockerApp method)

 	(dlg.apps.dynlib.DynlibProcApp method)

 	(dlg.apps.dynlib.DynlibStreamApp method)

 	(dlg.apps.socket_listener.SocketListenerApp method)

 	(dlg.apps.spead_receiver.SpeadReceiverApp method)

 	(dlg.drop.AbstractDROP method)

 	(dlg.drop.AppDROP method)

 	(dlg.drop.BarrierAppDROP method)

 	(dlg.drop.ContainerDROP method)

 	(dlg.drop.DirectoryContainer method)

 	(dlg.drop.FileDROP method)

 	(dlg.drop.InMemoryDROP method)

 	(dlg.drop.InputFiredAppDROP method)

 	(dlg.drop.NgasDROP method)

 	(dlg.drop.RDBMSDrop method)

 	(dlg.drop.ShoreDROP method)

 	(dlg.s3_drop.S3DROP method)

 	
 	initializeSpecifics() (dlg.manager.rest.CompositeManagerRestServer method)

 	(dlg.manager.rest.ManagerRestServer method)

 	(dlg.manager.rest.MasterManagerRestServer method)

 	(dlg.manager.rest.NMRestServer method)

 	InMemoryDROP (class in dlg.drop)

 	InputFiredAppDROP (class in dlg.drop)

 	inputs (dlg.drop.AppDROP attribute)

 	insert() (dlg.drop.RDBMSDrop method)

 	InvalidLibrary

 	IOForURL() (in module dlg.io)

 	is_time_critical() (dlg.dropmake.scheduler.MinNumPartsScheduler method)

 	(dlg.dropmake.scheduler.MySarkarScheduler method)

 	isabs() (in module dlg.utils)

 	isBeingRead() (dlg.drop.AbstractDROP method)

 	isCompleted() (dlg.drop.AbstractDROP method)

J

 	
 	json (dlg.dropmake.pg_generator.PGT attribute)

K

 	
 	key (dlg.s3_drop.S3DROP attribute)

 	
 	KFamilyPartition (class in dlg.dropmake.scheduler)

L

 	
 	label_schedule() (dlg.dropmake.scheduler.DAGUtil static method)

 	LG (class in dlg.dropmake.pg_generator)

 	lgn_to_pgn() (dlg.dropmake.pg_generator.LG method)

 	
 	ListAsDict (class in dlg.drop)

 	listify() (in module dlg.droputils)

 	load_and_init() (in module dlg.apps.dynlib)

 	loadDropSpecs() (in module dlg.graph_loader)

M

 	
 	ManagerRestServer (class in dlg.manager.rest)

 	map_partitions() (dlg.dropmake.scheduler.Scheduler method)

 	MasterManagerClient (class in dlg.manager.client)

 	MasterManagerRestServer (class in dlg.manager.rest)

 	MCTSScheduler (class in dlg.dropmake.scheduler)

 	meet_constraint() (dlg.dropmake.scheduler.GraphAnnealer method)

 	MemoryIO (class in dlg.io)

 	merge_partitions() (dlg.dropmake.pg_generator.MetisPGTP method)

 	(dlg.dropmake.pg_generator.MySarkarPGTP method)

 	(dlg.dropmake.scheduler.Scheduler method)

 	
 	metis_part() (dlg.dropmake.scheduler.DAGUtil static method)

 	MetisPGTP (class in dlg.dropmake.pg_generator)

 	MinNumPartsPGTP (class in dlg.dropmake.pg_generator)

 	MinNumPartsScheduler (class in dlg.dropmake.scheduler)

 	move() (dlg.dropmake.scheduler.GraphAnnealer method)

 	MultiWeightPartition (class in dlg.dropmake.scheduler)

 	MySarkarPGTP (class in dlg.dropmake.pg_generator)

 	MySarkarScheduler (class in dlg.dropmake.scheduler)

N

 	
 	NgasArchivingApp (class in dlg.apps.archiving)

 	NgasDROP (class in dlg.drop)

 	NgasIO (class in dlg.io)

 	NgasLiteIO (class in dlg.io)

 	NMRestServer (class in dlg.manager.rest)

 	
 	NodeManager (class in dlg.manager.node_manager)

 	NodeManagerBase (class in dlg.manager.node_manager)

 	NodeManagerClient (class in dlg.manager.client)

 	NullDROP (class in dlg.drop)

 	NullIO (class in dlg.io)

O

 	
 	object_tracking() (in module dlg.utils)

 	objective_func() (dlg.dropmake.scheduler.PSOScheduler method)

 	oid (dlg.drop.AbstractDROP attribute)

 	open() (dlg.drop.AbstractDROP method)

 	(dlg.io.DataIO method)

 	
 	outputs (dlg.drop.AppDROP attribute)

 	override_cannot_add() (dlg.dropmake.scheduler.MinNumPartsScheduler method)

 	(dlg.dropmake.scheduler.MySarkarScheduler method)

P

 	
 	parent (dlg.drop.AbstractDROP attribute)

 	Partition (class in dlg.dropmake.scheduler)

 	partition() (in module dlg.dropmake.pg_generator)

 	partition_dag() (dlg.dropmake.scheduler.MCTSScheduler method)

 	(dlg.dropmake.scheduler.MySarkarScheduler method)

 	(dlg.dropmake.scheduler.PSOScheduler method)

 	(dlg.dropmake.scheduler.SAScheduler method)

 	path (dlg.apps.dockerapp.DockerPath attribute)

 	(dlg.s3_drop.S3DROP attribute)

 	PathBasedDrop (class in dlg.drop)

 	PGManager (class in dlg.dropmake.pg_manager)

 	PGT (class in dlg.dropmake.pg_generator)

 	PGUtil (class in dlg.dropmake.pg_manager)

 	phase (dlg.drop.AbstractDROP attribute)

 	portIsClosed() (in module dlg.utils)

 	
 	portIsOpen() (in module dlg.utils)

 	precious (dlg.drop.AbstractDROP attribute)

 	pred_exec_time() (dlg.dropmake.pg_generator.PGT method)

 	prepare_c_inputs() (in module dlg.apps.dynlib)

 	prepare_c_outputs() (in module dlg.apps.dynlib)

 	prepare_input_channel() (in module dlg.apps.bash_shell_app)

 	prepare_output_channel() (in module dlg.apps.bash_shell_app)

 	prepare_sql() (in module dlg.utils)

 	probe_max_dop() (dlg.dropmake.scheduler.Partition method)

 	producerFinished() (dlg.drop.AbstractDROP method)

 	producers (dlg.drop.AbstractDROP attribute)

 	prune_antichains() (dlg.dropmake.scheduler.DAGUtil static method)

 	PSOPGTP (class in dlg.dropmake.pg_generator)

 	PSOScheduler (class in dlg.dropmake.scheduler)

 	publish_event() (dlg.manager.node_manager.NodeManagerBase method)

R

 	
 	RDBMSDrop (class in dlg.drop)

 	read() (dlg.drop.AbstractDROP method)

 	(dlg.io.DataIO method)

 	register_service() (in module dlg.utils)

 	remove() (dlg.dropmake.scheduler.Partition method)

 	replace_dataurl_placeholders() (in module dlg.droputils)

 	replace_path_placeholders() (in module dlg.droputils)

 	RpcMixIn (class in dlg.manager.node_manager)

 	run() (dlg.apps.archiving.ExternalStoreApp method)

 	(dlg.apps.bash_shell_app.BashShellApp method)

 	(dlg.apps.bash_shell_app.StreamingOutputBashApp method)

 	(dlg.apps.crc.CRCApp method)

 	(dlg.apps.dockerapp.DockerApp method)

 	(dlg.apps.dynlib.DynlibApp method)

 	(dlg.apps.dynlib.DynlibProcApp method)

 	(dlg.apps.socket_listener.SocketListenerApp method)

 	(dlg.apps.spead_receiver.SpeadReceiverApp method)

 	(dlg.drop.InputFiredAppDROP method)

 	(in module dlg.apps.dynlib)

 	
 	run_bash() (in module dlg.apps.bash_shell_app)

S

 	
 	S3DROP (class in dlg.s3_drop)

 	SAScheduler (class in dlg.dropmake.scheduler)

 	Schedule (class in dlg.dropmake.scheduler)

 	schedule (dlg.dropmake.scheduler.Partition attribute)

 	schedule_matrix (dlg.dropmake.scheduler.Schedule attribute)

 	Scheduler (class in dlg.dropmake.scheduler)

 	SchedulerException

 	select() (dlg.drop.RDBMSDrop method)

 	session() (dlg.manager.client.BaseDROPManagerClient method)

 	session_status() (dlg.manager.client.BaseDROPManagerClient method)

 	sessions() (dlg.manager.client.BaseDROPManagerClient method)

 	setCompleted() (dlg.drop.AbstractDROP method)

 	setError() (dlg.drop.AbstractDROP method)

 	ShoreDROP (class in dlg.drop)

 	ShoreIO (class in dlg.io)

 	shutdown() (dlg.manager.node_manager.NodeManagerBase method)

 	
 	size (dlg.drop.AbstractDROP attribute)

 	size() (dlg.s3_drop.S3DROP method)

 	SocketListenerApp (class in dlg.apps.socket_listener)

 	SpeadReceiverApp (class in dlg.apps.spead_receiver)

 	start() (dlg.manager.node_manager.NodeManagerBase method)

 	status (dlg.drop.AbstractDROP attribute)

 	store() (dlg.apps.archiving.ExternalStoreApp method)

 	(dlg.apps.archiving.NgasArchivingApp method)

 	streamingConsumers (dlg.drop.AbstractDROP attribute)

 	StreamingInputBashApp (class in dlg.apps.bash_shell_app)

 	StreamingInputBashAppBase (class in dlg.apps.bash_shell_app)

 	StreamingInputOutputBashApp (class in dlg.apps.bash_shell_app)

 	streamingInputs (dlg.drop.AppDROP attribute)

 	StreamingOutputBashApp (class in dlg.apps.bash_shell_app)

 	subscribe() (dlg.event.EventFirer method)

 	(dlg.manager.node_manager.NodeManagerBase method)

T

 	
 	terminate_or_kill() (in module dlg.utils)

 	to_externally_contactable_host() (in module dlg.utils)

 	to_gojs_json() (dlg.dropmake.pg_generator.MetisPGTP method)

 	(dlg.dropmake.pg_generator.MySarkarPGTP method)

 	(dlg.dropmake.pg_generator.PGT method)

 	
 	to_partition_input() (dlg.dropmake.pg_generator.MetisPGTP method)

 	(dlg.dropmake.pg_generator.MySarkarPGTP method)

 	(dlg.dropmake.pg_generator.PGT method)

 	to_pg_spec() (dlg.dropmake.pg_generator.PGT method)

U

 	
 	uid (dlg.drop.AbstractDROP attribute)

 	unroll() (in module dlg.dropmake.pg_generator)

 	
 	unroll_to_tpl() (dlg.dropmake.pg_generator.LG method)

 	unsubscribe() (dlg.event.EventFirer method)

V

 	
 	vstack_mat() (dlg.dropmake.pg_manager.PGUtil static method)

W

 	
 	WeightedDilworthPartition (class in dlg.dropmake.scheduler)

 	workload (dlg.dropmake.scheduler.Schedule attribute)

 	
 	write() (dlg.drop.AbstractDROP method)

 	(dlg.io.DataIO method)

 	write_to() (in module dlg.utils)

Z

 	
 	ZlibCompressedStream (class in dlg.utils)

 	
 	ZlibUncompressedStream (class in dlg.utils)

 	zmq_safe() (in module dlg.utils)

 _static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_images/DALiuGE_naming_rationale.png
Island

|

y
vt

Parallel Water Streams

Drops

Parallel streams splash onto the (Data) Island, and turn into Drops

_images/dfms_func_as_graphs.jpg
Requested SDP capability SchedBlock params. PIP Profiles -\ profiles Available nodes it

Exccute SOP Capability| Notity ™M

Error Notification

_images/examples_simpleScatter_lg.png
Splitted Data JSREEEEE Second ShellApp
Single Data

_images/examples_simpleScatter_pg.png

_images/loop_example.png
1
=] Major Cycl

=~

E3—
E Modal Vvis —» Subtract I

|

G

(=] Minor Cycle

=

Subract
‘compnt frm
img plane

Identify
-@- A

Fi

558

Eh

nav.xhtml

 Table of Contents

 		
 DALiuGE

 		
 Introduction

 		
 Installation

 		
 Requirements

 		
 Installing

 		
 Docker images

 		
 Overview

 		
 Concepts and Background

 		
 Dataflow

 		
 Graph

 		
 Data-driven

 		
 DALiuGE Functions

 		
 DROPs

 		
 Lifecycle

 		
 Events

 		
 Relationships

 		
 Input/Output

 		
 DROP Channels

 		
 DROP Component Interface

 		
 Graphs

 		
 Logical Graph

 		
 Translation

 		
 Physical Graph

 		
 Execution

 		
 DROP Managers

 		
 Sessions

 		
 Node DROP Manager

 		
 Data Island DROP Manager

 		
 Master DROP Manager

 		
 Interface

 		
 Clients

 		
 Data Lifecycle Manager

 		
 References

 		
 Graph development

 		
 Using the Logical Graph Editor

 		
 Directly creating a Physical Graph

 		
 Using dlg.delayed()

 		
 Application development

 		
 Class

 		
 I/O

 		
 Using the Logical Graph Editor

 		
 General

 		
 Components

 		
 ShellApp

 		
 Data

 		
 Scatter

 		
 Examples

 		
 Simple scatter

 		
 API

 		
 dlg

 		
 dlg.event

 		
 dlg.io

 		
 dlg.drop

 		
 dlg.s3_drop

 		
 dlg.droputils

 		
 dlg.utils

 		
 dlg.graph_loader

 		
 dlg.delayed

 		
 dlg.manager

 		
 dlg.manager.session

 		
 dlg.manager.drop_manager

 		
 dlg.manager.node_manager

 		
 dlg.manager.composite_manager

 		
 dlg.manager.rest

 		
 dlg.manager.client

 		
 dlg.apps

 		
 dlg.apps.bash_shell_app

 		
 dlg.apps.dynlib

 		
 dlg.apps.dockerapp

 		
 dlg.apps.socket_listener

 		
 dlg.apps.spead_receiver

 		
 dlg.apps.scp

 		
 dlg.apps.archiving

 		
 dlg.apps.crc

 		
 dlg.dropmake

 		
 dlg.dropmake.web.lg_web

 		
 dlg.dropmake.pg_generator

 		
 dlg.dropmake.scheduler

 		
 dlg.dropmake.pg_manager

_static/comment-bright.png

_images/scatter_example.png
:
)

! 5
=1}

Component 3
Component 5

(= — oottt s on

B-fi

I

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

